terclim by ICS banner
IVES 9 IVES Conference Series 9 Climate change impacts: a multi-stress issue

Climate change impacts: a multi-stress issue

Abstract

With the aim of producing premium wines, it is admitted that moderate environmental stresses may contribute to the accumulation of compounds of interest in grapes. However, the ongoing climate change, with the appearance of more limiting conditions of production is a major concern for the wine industry economic. Will it be possible to maintain the vineyards in place, to preserve the current grape varieties and how should we anticipate the adaptation measures to ensure the sustainability of vineyards? In this context, the question of the responses and adaptation of grapevine to abiotic stresses becomes a major scientific issue to tackle. An abiotic stress can be defined as the effect of a specific factor of the physico-chemical environment of the plants (temperature, availability of water and minerals, light, etc.) which reduces growth, and for a crop such as the vine, the yield, the composition of the fruits and the sustainability of the plants. Water stress is in many minds, but a systemic vision is essential for at least two reasons. The first reason is that in natural environments, a single factor is rarely limiting, and plants have to deal with a combination of constraints, as for example heat and drought, both in time and at a given time. The second reason is that plants, including grapevine, have central mechanisms of stress responses, as redox regulatory pathways, that play an important role in adaptation and survival. Here we will review the most recent studies dealing with this issue to provide a better understanding of the grapevine responses to a combination of environmental constraints and of the underlying regulatory pathways, which may be very helpful to design more adapted solutions to cope with climate change.  

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Nathalie Ollat, Elisa Marguerit, Ghislaine Hilbert, Eric Gomès, Gregory Gambetta and Cornelis van Leeuwen

EGFV, Univ Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France

Contact the author

Keywords

abiotic stresses, biotic stresses, heat, drought, adaptation, central regulatory pathways

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Role of VvNCED1 in β-damascenone and abscisic acid biosynthesis: new insights into aroma development in grapes

β-Damascenone is a key norisoprenoid in grape (Vitis vinifera L.) that imparts floral and fruity aromas to both fruits and wines. It is derived from carotenoid metabolism, with neoxanthin as a substrate.

Evaluation of viticultural suitability of Arezzo Province (Tuscany)

Dans une région comme la Toscane, zone dans laquelle sont produits certains des meilleurs vins italiens et du monde, la province d’Arezzo a actuellement une importance relativement marginale

Exploring the regulatory role of the grapevine MIXTA homologue in cuticle formation and abiotic stress resilience

The outer waxy layer of plant aerial structures, known as the cuticle, represents an important trait that can be targeted to increase plant tolerance against abiotic stresses exacerbated by environmental transition. The MIXTA transcription factor, member of the R2R3-MYB family, is known to affect conical shape of petal epidermal cells in Anthirrinum, cuticular thickness in tomato fruit and trichome formation and morphology in several crops. The aim of this study was to investigate the role of the grapevine MIXTA homologue by phenotypic and molecular characterization of overexpressing and knock-out grapevine lines.

Exploring the presence of oligopeptides in wines into identify possible compounds with umami or kokumi properties

Umami is defined as a pleasant and savory taste derived from glutamate, inosinate and guanylate, which are naturally present in meat, fish, vegetables and dairy products. The term “kokumi” refers to a complex flavour sensation, characterized by thickness, fullness and continuity.

Les préparations biodynamiques 500 et 501 ont elles un effet sur la vigne ?

Dans le cadre de TerclimPro 2025, Markus Rienth a présenté un article IVES Technical Reviews. Retrouvez la présentation ci-dessous ainsi que l’article associé : https://ives-technicalreviews.eu/article/view/8396