Terroir 1996 banner
IVES 9 IVES Conference Series 9 Evolution of several biochemical compounds during the development of Merlot wine in the vinegrowing “Terroir” of Valea Călugăreasa

Evolution of several biochemical compounds during the development of Merlot wine in the vinegrowing “Terroir” of Valea Călugăreasa


The qualitative and quantitative distribution of the phenolic compounds in red wines depends on cultivars features, on grapes maturation state, on grapes processing technology including must obtention, as well as on maceration-fermentation method (Margheri, 1981). The last two factors are responsible for the different phenolic composition of the wines produced from the same cultivar. Dealu Mare vineyard offers favourable conditions for a higher capitalization of Cabemet Sauvignon, Pinot noir, Merlot and Fetească neagră cultivars. The red wines having a middle or high content in phenolic compounds and a well-balanced phenolic composition are advisable for being developed in oak barrels (Sommers and Pocock, 1990).

The study which was undertaken at the Research Institute for Viticulture and Enology, Valea Calugareasca, during 1987-1995 was pursuing both the evolution of phenolic composition and wines color, and the influence of the keeping container on the quality of Merlot wine.


Publication date: March 25, 2022

Issue: Terroir 1996

Type : Poster



Research Institute for Viticulture and Enology, Valea Calugareasca,
2040, Prahova district, Romani


IVES Conference Series | Terroir 1996


Related articles…


Toasted vine-shoots as enological additive represents a promising topic due to their significant effect on wine profile. However, the use of this new enological tool with SEGs varieties different than wine and combined with others winemaking technologies, such as micro-oxygenation (MOX), has not been studied so far, despite this combination could result in wine with high chemical and organoleptic quality.

Relationships between sensitivity to high temperature, stomatal conductance and vegetative architecture in a set of grapevine varieties

High temperatures influence plant development and induce a large set of physiological responses at the leaf scale. Stomatal closure is one of the most observed responses to high temperatures. This response is commonly considered as an adaptive strategy to reduce water loss and embolism in the vascular system caused by the high evaporative demand.

Is early defoliation a sustainable management practice for mediterranean vineyards? Case studies at the portuguese lisbon winegrowing region

Context and purpose of the study ‐ Recently early defoliation (ED) has been tested in several high‐ yielding grapevine varieties and sites aiming at reducing cluster compactness and hence, regulating yield and susceptibility to botrytis bunch rot infection. The reported results have been generally positive, encouraging growers to use this canopy management technique as an alternative for replacing the conventional time‐consuming cluster thinning and, simultaneously, as a sustainable practice to reduce the use of fungicides. However, ED increases berry sunburn risks and/or can induce carry‐over effects on vigor and node fruitfulness as shown in the two case studies reported in this work.

A new AI-based system for early and accurate vineyard yield forecasting

Vineyard yield forecasting is a key issue for vintage scheduling and optimization of winemaking operations. High errors in yield forecasting can be found in the wine industry, mainly due to the high spatial variability in vineyards, strong dependency on historical yield data, insufficient use of agroclimatic data and inadequate sampling methods

Ripening of cv. Cabernet Sauvignon grapes: polysaccharides fractions evolution and phenolic extractability

Polysaccharides and more specifically pectins, make up a significant portion of the cell wall material of the plant cells including the grapes. During the fruit ripening the associated softening is related to the breakdown of the cell wall polysaccharides. During this process, it is expected that polysaccharides that are soluble in red wine will be formed influencing its texture. Anthocyanins are responsible for the wine color and tannins for the astringency, body and bitterness of the wine. In the skins, these compounds are located in the cell vacuoles and the barrier that conditions their extractability is the skin cell wall that may determine the mechanical resistance, the texture and the ease of processing berries. The aim of this work was study the evolution of the polysaccharides and the anthocyanin and tannin extractability during the ripening period in Cabernet Sauvignon grapes, trying to correlate these variables.