terclim by ICS banner
IVES 9 IVES Conference Series 9 Mesoclimate impact on Tannat in the Atlantic terroir of Uruguay

Mesoclimate impact on Tannat in the Atlantic terroir of Uruguay

Abstract

The study of climate is relevant as an element conditioning the typicity of a product, its quality and sustainability over the years. The grapevine development and growth and the final grape and wine composition are closely related to temperature, while climate components vary at mesoscale according to topography and/or proximity to large bodies of water. The objective of this work is to assess the mesoclimate of the Atlantic region of Uruguay and to determine the effect of topography and the ocean on temperature and consequently on Tannat grapevine behavior. For this purpose, an automatic weather station and a network of 19 temperature sensors were installed in 2018 in plots of a commercial vineyard in contrasting topographic situations. Nine sensors correspond to Tannat plots. Based on the climatic data for 2018-19 and 2019-20 growing seasons, bioindicators for grapevine were calculated and relationships between site topography and plant response were analyzed. Temporal climate variability between the two growing seasons is explained by rainfall and spatial variability was associated with plots’ topography. Altitude was the main feature that statistically differentiated the plots’ temperature. The effect was observed on thermal amplitude, Cool Night Index, number of days above 30 °C and maximum summer temperature. During the summer of the warmest growing season (2019-20), at 14:00 LH the average thermal difference was -1.7 °C in favor of higher altitude (140 masl) compared to lower altitude (70 masl). The main factor conditioning this result was the ocean proximity and exposure to sea breeze air circulation. Plots in higher elevations favored grapes with higher malic acid content, while lower elevations showed berries with higher amounts of secondary metabolites. This study provides knowledge about Tannat behavior under ocean condition and in a complex region which could be of value to adapt sustainable viticulture techniques.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Ramiro Tachini1, Milka Ferrer1, Valérie Bonnardot2, Martin Fanzone3 and Mercedes Fourment1

1Facultad de Agronomía, Universidad de la República Oriental del Uruguay. Montevideo, Uruguay
2University Rennes 2, LETG-UMR 6554 CNRS, Rennes, France
3Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (INTA), Mendoza, Argentina

Contact the author

Keywords

mesoclimate, South America, Oceanic wine region, Tannat, grape composition

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Implication of secondary viral infections on grafting success rated in nurseries

Grapevine grafting is a complex process that since the establishment of phylloxera has become mandatory for grapevine. Grafting success in grapevine nurseries considerably varies among years and batches with most variety/rootstock combinations reach a high success rate (between 75% and 90%), but some combinations show lower success rates of around 40-50%. The causes of this variation are unknown, although biotic stresses like those caused by some viral infections have been demonstrated to affect the process. European certification schemes for the vegetative propagation of the vine include five major viruses (Arabis mosaic virus, Grapevine Fanleaf Virus, Grapevine Fleck Virus, and Grapevine-associated Leafroll Virus 1 and 3).

The colour pattern of flower arrangements influence wine tasters’ sensory description

The arrangements of flowers and wine counterparts are inextricably linked. Whether a fundamental aspect of tablescaping or acolytes to broader entertainment rituals, they have an entangled history since ancient times. The aim of this contribution is to verify the influence of visually delicate and robust flower arrangements on individual description of wines. Changes in the sensory description of wines were investigated during subjects’ (thirty-two participants) exposure to three different conditions: the presence of delicate, robust, or totally absent flower arrangements.

Unveiling a hidden link: does time hold the key to altered spectral signatures of grapevines under drought?

Remote sensing technology captures spectral data beyond the visible range, making it useful for monitoring plant stress. Vis-NIR (Visible-Near Infrared) spectroscopy (400-1000 nm) is commonly used to indirectly assess plant status during drought. One example is the widespread use of normalized difference vegetation index (NDVI) that is strongly linked to green biomass. However, a knowledge gap exists regarding the applicability of this method to all the drought conditions and if it is a direct correlation to the water status of the plant.

The adaptation and resilience of scions and rootstocks to water constraint

The ability of grapevine cultivars and rootstocks to cope with and adapt to recurring water constraints is the focus of this study. The contribution of intrinsic (epigenetic) and extrinsic (rootzone microbial community) factors to water stress resilience will be discussed. The study was conducted in a validated model vineyard where three scion cultivars (Pinotage, Shiraz, and Cabernet Sauvignon) on two rootstocks (Richter 110 and USVIT8-7) grow under recurring seasonal water constraint (and control) scenarios since planting (in 2020). Comprehensive profiling of the site, soil, atmospheric conditions, plants, and their physiological responses provide contextual data for the analyses conducted.

Understanding the impact of climate change on anthocyanin concentrations in Napa Valley Cabernet Sauvignon

Climate change is having a significant impact on the wine industry through more regular drought conditions, fires, and heat events, leading to crop loss. Furthermore, these events can reduce overall quality of the fruit, even when crop yields are not impacted. Anthocyanins are considered one of the most important classes of compounds for red wine production and are known to be sensitive to vine water status and heat events.