terclim by ICS banner
IVES 9 IVES Conference Series 9 Mesoclimate impact on Tannat in the Atlantic terroir of Uruguay

Mesoclimate impact on Tannat in the Atlantic terroir of Uruguay

Abstract

The study of climate is relevant as an element conditioning the typicity of a product, its quality and sustainability over the years. The grapevine development and growth and the final grape and wine composition are closely related to temperature, while climate components vary at mesoscale according to topography and/or proximity to large bodies of water. The objective of this work is to assess the mesoclimate of the Atlantic region of Uruguay and to determine the effect of topography and the ocean on temperature and consequently on Tannat grapevine behavior. For this purpose, an automatic weather station and a network of 19 temperature sensors were installed in 2018 in plots of a commercial vineyard in contrasting topographic situations. Nine sensors correspond to Tannat plots. Based on the climatic data for 2018-19 and 2019-20 growing seasons, bioindicators for grapevine were calculated and relationships between site topography and plant response were analyzed. Temporal climate variability between the two growing seasons is explained by rainfall and spatial variability was associated with plots’ topography. Altitude was the main feature that statistically differentiated the plots’ temperature. The effect was observed on thermal amplitude, Cool Night Index, number of days above 30 °C and maximum summer temperature. During the summer of the warmest growing season (2019-20), at 14:00 LH the average thermal difference was -1.7 °C in favor of higher altitude (140 masl) compared to lower altitude (70 masl). The main factor conditioning this result was the ocean proximity and exposure to sea breeze air circulation. Plots in higher elevations favored grapes with higher malic acid content, while lower elevations showed berries with higher amounts of secondary metabolites. This study provides knowledge about Tannat behavior under ocean condition and in a complex region which could be of value to adapt sustainable viticulture techniques.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Ramiro Tachini1, Milka Ferrer1, Valérie Bonnardot2, Martin Fanzone3 and Mercedes Fourment1

1Facultad de Agronomía, Universidad de la República Oriental del Uruguay. Montevideo, Uruguay
2University Rennes 2, LETG-UMR 6554 CNRS, Rennes, France
3Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (INTA), Mendoza, Argentina

Contact the author

Keywords

mesoclimate, South America, Oceanic wine region, Tannat, grape composition

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Geographical indication “Brandy Italiano”: study on the influence of wood barrel toasting and natural seasoning on endogenous and wood-derived compounds of aged distillates

The European geographical indication (GI) Brandy Italiano is exclusively reserved to brandy obtained in Italy from the distillation of wine from grapes grown and vinified in the national territory [1].

Implications of the nature of organic mulches used in vineyards on grapevine water status, yield, berry quality and biological soil health  

Climate emergency is going to affect the agricultural suistainability, wine grapes being probably one of the crops more sensitive to environmental constraints. In this context, mitigation strategies such as the revalorization of agricultural wastes are paramount to cope with the current challenges. The use of organic mulches has been reported to reduce soil water evaporation and improve vine water status, reduce soil erosion, and increase soil organic matter with little impact on berry quality. However, less is known about their effects on the microbiote of vineyards.

Temperature-based phenology modelling for the grapevine 

Historical phenology records have indicated that advances in key developmental stages such as budburst, flowering and veraison are linked to increasing temperature caused by climate change. Using phenological models the timing of grapevine development in response to temperature can be characterized and projected in response to future climate scenarios.
We explore the development and use of grapevine phenological models and highlight several applications of models to characterize the timing of key stages of development of varieties, within and between regions, and the result of projections under different climate change scenarios.

Mapping grapevine metabolites in response to pathogen challenge: a Mass Spectrometry Imaging approach

Every year, viticulture is facing several outbreaks caused by established diseases, such as downy mildew and grey mould, which possess different life cycles and modes of infection. To cope with these different aggressors, grapevine must recognize them and arm itself with an arsenal of defense strategies.
The regulation of secondary metabolites is one of the first reactions of plants upon pathogen challenge. Their rapid biosynthesis can highly contribute to strengthen the defense mechanisms allowing the plant to adapt, defend and survive.

Unexpected relationships between δ13C, water deficit, and wine grape performance

Water nutrition is crucial for wine grape performance. Thus soil investigation aims at characterizing spatial and temporal variability of available water. A possible strategy