terclim by ICS banner
IVES 9 IVES Conference Series 9 Mesoclimate impact on Tannat in the Atlantic terroir of Uruguay

Mesoclimate impact on Tannat in the Atlantic terroir of Uruguay

Abstract

The study of climate is relevant as an element conditioning the typicity of a product, its quality and sustainability over the years. The grapevine development and growth and the final grape and wine composition are closely related to temperature, while climate components vary at mesoscale according to topography and/or proximity to large bodies of water. The objective of this work is to assess the mesoclimate of the Atlantic region of Uruguay and to determine the effect of topography and the ocean on temperature and consequently on Tannat grapevine behavior. For this purpose, an automatic weather station and a network of 19 temperature sensors were installed in 2018 in plots of a commercial vineyard in contrasting topographic situations. Nine sensors correspond to Tannat plots. Based on the climatic data for 2018-19 and 2019-20 growing seasons, bioindicators for grapevine were calculated and relationships between site topography and plant response were analyzed. Temporal climate variability between the two growing seasons is explained by rainfall and spatial variability was associated with plots’ topography. Altitude was the main feature that statistically differentiated the plots’ temperature. The effect was observed on thermal amplitude, Cool Night Index, number of days above 30 °C and maximum summer temperature. During the summer of the warmest growing season (2019-20), at 14:00 LH the average thermal difference was -1.7 °C in favor of higher altitude (140 masl) compared to lower altitude (70 masl). The main factor conditioning this result was the ocean proximity and exposure to sea breeze air circulation. Plots in higher elevations favored grapes with higher malic acid content, while lower elevations showed berries with higher amounts of secondary metabolites. This study provides knowledge about Tannat behavior under ocean condition and in a complex region which could be of value to adapt sustainable viticulture techniques.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Ramiro Tachini1, Milka Ferrer1, Valérie Bonnardot2, Martin Fanzone3 and Mercedes Fourment1

1Facultad de Agronomía, Universidad de la República Oriental del Uruguay. Montevideo, Uruguay
2University Rennes 2, LETG-UMR 6554 CNRS, Rennes, France
3Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (INTA), Mendoza, Argentina

Contact the author

Keywords

mesoclimate, South America, Oceanic wine region, Tannat, grape composition

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Observatoire Grenache en vallée du Rhône : démarche et premiers résultats après une année d’étude

Face à l’enjeu d’affirmer et de mieux comprendre la spécificité des vins en relation avec leur origine, la notion de « terroir », avec la richesse de sens et la diversité des perspectives qui l’éclairent, se révèle la clef de voûte de la production et de la valorisation de vins personnalisés et typiques. Asseoir la connaissance des principaux terroirs de la Vallée du Rhône sur des bases autres que celles, jusqu’alors essentiellement empiriques, invoquées dans la seconde grande région française productrice de vins d’AOC, constitue un projet conforme à l’intérêt voué à cet enjeu d’actualité.

Comparison of tannin analysis by protein precipitation and normal-phase HPLC

Tannins are a heterogenous class of polymeric phenolics found in grapes, oak barrels and wine. In red wine tannins are primarily responsible for astringency, though they also have an important role in reacting with and stabilizing pigments. There are numerous sub-classes of tannins found in wine but they all share structural heterogeneity within each sub-class, with varied polymer composition, configuration and length.

Numerous methodologies exist for the quantification of tannins, however, protein precipitation using bovine serum albumin has proved itself useful due to its strong correlation to the sensory perception of astringency and the basic instruments required for the method. Though the method can yield valuable insights into tannin composition, it cannot be automated easily and necessitates well-trained personnel.

Drip irrigation and precision cooling reduce impact of extreme heat events during berry ripening

Context and purpose of the study. Heatwaves have become more frequent and intense in several winegrowing regions.

Evidence for terroir effect associated with botrytisation relatively to compounds implicated in typical aromas of noble rot sweet wines

Recent studies have demonstrated the role of certain lactones, particularly 2-nonen-4-olide, and volatile thiols (3-sulfanylhexan-1-ol) in the over ripped aromas of noble rot sweet wines (Stamatopoulos et al. 2014ab). These compounds are partly formed during the maturation and under the activity of B. cinerea on grapes. This research was carried out in the vineyard of Sauternes with aim to better understand their genesis depending on the grape over-ripening on two different soil types during 3 vintages. Thus, the study was conducted, with the Sémillon grape, during vintages 2012, 2014 & 2015, at 4 stages of over-maturation of the grapes (healthy, pourri plein, pourri roti, pourri roti + 15 days) considering two vineyard plots with different soil characteristics (calcosol & peyrosol) planted with the 315 Sémillon clone and grafted on 101-14 rootstock respectively in 1981 and 1980 and cultivated with the same vineyard management. Volatile lactones were assayed by liquid-liquid extraction followed by GC/MS analysis and the precursors of 3-sulfanylhexanol by an adaptation of the method by Capone et al. 2010 (SPE-
UPLC/FTMS).

Membrane contactor: a sustainable technology to remove dissolved oxygen from wine and preserve wine aroma

Oxygen management in wine is one of the most significant challenging issues for winemakers.