terclim by ICS banner
IVES 9 IVES Conference Series 9 Influence of weather and climatic conditions on the viticultural production in Croatia

Influence of weather and climatic conditions on the viticultural production in Croatia

Abstract

The research includes an analysis of the impact of weather conditions on phenological development of the vine and grape quality, through monitoring of four experimental cultivars (Chardonnay, Graševina, Merlot and Plavac mali) over two production years. In each experimental vineyard, which were evenly distributed throughout the regions of Slavonia and The Croatian Danube, Croatian Uplands, Istria and Kvarner and Dalmatia, the dates of occurrence of the following phenophases are recorded: swelling and opening of buds, the beginning of flowering, the pattern and technological maturity of grapes (harvesting), representing BBCH phases 09, 68, 83 and 89. By analysing multiannual data on harvest deadlines and qualitative parameters of grapes from different regions of Croatia and comparing them with climate data for the same period, we found that the main climatic components affected grape production. In addition, the meteorological data of the Croatian Hydrometeorological Institute also identified trends in Huglin’s index, index sum of the effective temperatures according to Winkler, cold night index and the average air temperature index in the vegetation, for the period 1961-2018. Maps of the four agroclimate indices in 1989-2018 and comparisons with the reference period 1961-1990 indicated climate change over the last 30 years. Due to the increase in the Huglin index of 200 -300°C throughout Croatia, it is possible to change the grapevine varieties in continental Croatia, i.e. planting black wine varieties that need a greater amount of heat, and the possibility of raising winegrowing plantations of early grape varieties in mountain Croatia below 600 m above sea level. The purpose of this research is to increase the adaptability and reduce the vulnerability of Croatian viticulture related to the impact of climate change on grape and wine production through the revision of existing and possible proposal for the establishment of new wine-growing zones in Croatia.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Ivan Prša1, Daniel Rašić2, Višnja Vučetić3, Maja Telišman Prtenjak4, Branimir Omazić4, Marko Karoglan5, Darko Preiner5 and Dragoslav Ivanišević6

1Croatian Center for Agriculture, Food and Rural Affairs, Centre for Viticulture, Enology and Edible Oils Analysis, Croatia
2Croatian Center for Agriculture, Food and Rural Affairs, Centre for Soils, Croatia
3Croatian Hydrometeorological Institute, Sector for Meteorological Research and Development, Department of Agrometeorology, Croatia
4Geofizički odsjek Prirodoslovno matematičkog  fakulteta Sveučilišta u Zagrebu, Croatia
5Faculty of Agriculture, University of Zagreb, Department of Viticulture and Enology, Croatia
6University of Novi Sad, Faculty of Agriculture, Serbia

Contact the author

Keywords

agroclimatic indices, climate, grapevine, viticultural zones

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Survey of pesticide residues in vineyard soils from the Denomination of Origin Ribeiro

Vineyards from mild temperature, high humidity locations receive often treatments with fungicides to prevent damages produced by fungi responsible for mildium, oidium and botrytis infections. In addition, insecticides are also applied to vineyards to fight again pests, which affect directly, or indirectly (as vectors of different diseases), their productivity. A fraction of the above compounds reaches the soil of vineyards, either during application, or when released from the canopy of vines due to rain-wash-off. Thereafter, depending on soil conditions (pH, organic matter) and environmental variables (regimen of rain, slope of vineyards), they might persist in this compartment, be degraded and/or transferred to water masses, modifying the biodiversity of soils and/or affecting the quality of water reservoirs.

The role of protein-phenolic interactions in the formation of red wine colloidal particles

Colloids play a crucial role in red wine quality and stability, yet their composition and formation mechanisms remain poorly understood.

Towards understanding the mechanisms of resistance to grapevine Flavescence dorée

Flavescence dorée (FD) is a very serious grapevine disease, classified as quarantine in europe, where it appeared in the middle of the last century. It is associated with the presence of phytoplasmas, transmitted in the vineyard by a leafhopper of american origin, scaphoideus titanus. FD causes severe wine production losses and often leads to plant death. There are currently no alternative solutions to insecticide treatments against the vector and uprooting diseased vines.

Etude des effets millésime, situation et sol à partir d’un observatoire du Gamay en beaujolais

Des expérimentations sur Gamay ont été réalisées en Beaujolais de 2000 à 2006 sur 10 parcelles d’AOC différentes. De nombreuses mesures ont été effectuées à différents stades (vigne, baies récoltées, vinification et bouteille avec ou sans vieillissement). Ces mesures sont également de natures différentes (données phénologiques, analytiques, dégustation). Des analyses de la composition des sols sont également disponibles.

A phylogenomic study reveals the major dissemination routes of ‘Tempranillo Tinto’ in the Iberian Peninsula

‘Tempranillo Tinto’ is a black-berried Iberian cultivar that originated from a hybridization between cvs. ‘Benedicto’ and ‘Albillo Mayor’ [1]. Today, it is the third most widely grown wine grape cultivar worldwide with more than 200,000 hectares of vineyards mostly distributed along the Iberian Peninsula, where it is also known as ‘Cencibel’, ‘Tinta de Toro’, ‘Tinta Roriz’, and ‘Aragonez’, among other synonyms. Here, we quantified the intra-varietal genomic diversity in this cultivar through the study of 35 clones or ancient vines from seven different Iberian wine-making regions. A comparative analysis after Illumina whole-genome sequencing revealed the presence of 1,120 clonal single nucleotide variants (SNVs).