terclim by ICS banner
IVES 9 IVES Conference Series 9 Influence of weather and climatic conditions on the viticultural production in Croatia

Influence of weather and climatic conditions on the viticultural production in Croatia

Abstract

The research includes an analysis of the impact of weather conditions on phenological development of the vine and grape quality, through monitoring of four experimental cultivars (Chardonnay, Graševina, Merlot and Plavac mali) over two production years. In each experimental vineyard, which were evenly distributed throughout the regions of Slavonia and The Croatian Danube, Croatian Uplands, Istria and Kvarner and Dalmatia, the dates of occurrence of the following phenophases are recorded: swelling and opening of buds, the beginning of flowering, the pattern and technological maturity of grapes (harvesting), representing BBCH phases 09, 68, 83 and 89. By analysing multiannual data on harvest deadlines and qualitative parameters of grapes from different regions of Croatia and comparing them with climate data for the same period, we found that the main climatic components affected grape production. In addition, the meteorological data of the Croatian Hydrometeorological Institute also identified trends in Huglin’s index, index sum of the effective temperatures according to Winkler, cold night index and the average air temperature index in the vegetation, for the period 1961-2018. Maps of the four agroclimate indices in 1989-2018 and comparisons with the reference period 1961-1990 indicated climate change over the last 30 years. Due to the increase in the Huglin index of 200 -300°C throughout Croatia, it is possible to change the grapevine varieties in continental Croatia, i.e. planting black wine varieties that need a greater amount of heat, and the possibility of raising winegrowing plantations of early grape varieties in mountain Croatia below 600 m above sea level. The purpose of this research is to increase the adaptability and reduce the vulnerability of Croatian viticulture related to the impact of climate change on grape and wine production through the revision of existing and possible proposal for the establishment of new wine-growing zones in Croatia.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Ivan Prša1, Daniel Rašić2, Višnja Vučetić3, Maja Telišman Prtenjak4, Branimir Omazić4, Marko Karoglan5, Darko Preiner5 and Dragoslav Ivanišević6

1Croatian Center for Agriculture, Food and Rural Affairs, Centre for Viticulture, Enology and Edible Oils Analysis, Croatia
2Croatian Center for Agriculture, Food and Rural Affairs, Centre for Soils, Croatia
3Croatian Hydrometeorological Institute, Sector for Meteorological Research and Development, Department of Agrometeorology, Croatia
4Geofizički odsjek Prirodoslovno matematičkog  fakulteta Sveučilišta u Zagrebu, Croatia
5Faculty of Agriculture, University of Zagreb, Department of Viticulture and Enology, Croatia
6University of Novi Sad, Faculty of Agriculture, Serbia

Contact the author

Keywords

agroclimatic indices, climate, grapevine, viticultural zones

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Effect of irrigation regime on carbon isotope ratio (δ13c) in different grapevines

In Castilla-La Mancha as other winegrowing regions, vineyards suffer the effects of the global climate warming. Severe spring and summer droughts are increasingly frequent, which concur with the phenological stages most susceptible to water and temperature stress. Under these conditions, irrigation use is required in order to ensure the vineyard growing sustainability. However water resources are increasingly limited, for this reason is required to choose cultivars displaying high water use efficiency.

Determination of secondary metabolites as quality and typicalness tracers in autochthonous vitis vinifera grapes and wines from Ischia isle

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

On the meaning of looking for terroir perceptions in blind tastings

If one considers as “physical or sensory attributes” of a wine its concentrations of alcohol and of other substances, it can be stated that another class of attributes exists

Phenological characterization of a wide range of Vitis Vinifera varieties

In order to study the impact of climate change on Bordeaux grape varieties and to assess the adaptation capacities of candidates to the grape varieties of this wine region to the new climatic conditions, an experimental block design composed of 52 grape varieties was set up in 2009 at the INRAE Bordeaux Aquitaine center. Among the many parameters studied, the three main phenological stages of the vine (budburst, flowering and veraison) have been closely monitored since 2012. Observations for each year, stage and variety were carried out on four independent replicates. Precocity indices have been calculated from the data obtained over the 2012-2021 period (Barbeau et al. 1998). This work allowed to group the phenological behaviour of the grapevine varieties, not only based on the timing of the subsequent developmental stages, but also on the overall precocity of the cycle and the total length of the cycle between budburst and veraison. Results regarding the variability observed among the different grape varieties for these phenological stages are presented as heat maps.

Smoke tainted wine – what now?

The frequency of bushfires close to wine regions around the world has increased in the last two decades. The economic losses incurred when grapes and wines are discarded due to ‘smoke taint’ are substantial (i.e., hundreds of millions of dollars). Efforts to mitigate and ameliorate smoke taint are therefore crucial. Chardonnay, rosé and cabernet sauvignon wines made from grapes exposed to smoke during the 2020 wildfires in eastern Australia were subjected to various amelioration techniques: the addition of activated carbons, molecularly imprinted polymers (mips), and a proprietary resin (either directly, or following membrane filtration); spinning cone column (scc) distillation; and finally, transformation into vinegar.