terclim by ICS banner
IVES 9 IVES Conference Series 9 Influence of weather and climatic conditions on the viticultural production in Croatia

Influence of weather and climatic conditions on the viticultural production in Croatia

Abstract

The research includes an analysis of the impact of weather conditions on phenological development of the vine and grape quality, through monitoring of four experimental cultivars (Chardonnay, Graševina, Merlot and Plavac mali) over two production years. In each experimental vineyard, which were evenly distributed throughout the regions of Slavonia and The Croatian Danube, Croatian Uplands, Istria and Kvarner and Dalmatia, the dates of occurrence of the following phenophases are recorded: swelling and opening of buds, the beginning of flowering, the pattern and technological maturity of grapes (harvesting), representing BBCH phases 09, 68, 83 and 89. By analysing multiannual data on harvest deadlines and qualitative parameters of grapes from different regions of Croatia and comparing them with climate data for the same period, we found that the main climatic components affected grape production. In addition, the meteorological data of the Croatian Hydrometeorological Institute also identified trends in Huglin’s index, index sum of the effective temperatures according to Winkler, cold night index and the average air temperature index in the vegetation, for the period 1961-2018. Maps of the four agroclimate indices in 1989-2018 and comparisons with the reference period 1961-1990 indicated climate change over the last 30 years. Due to the increase in the Huglin index of 200 -300°C throughout Croatia, it is possible to change the grapevine varieties in continental Croatia, i.e. planting black wine varieties that need a greater amount of heat, and the possibility of raising winegrowing plantations of early grape varieties in mountain Croatia below 600 m above sea level. The purpose of this research is to increase the adaptability and reduce the vulnerability of Croatian viticulture related to the impact of climate change on grape and wine production through the revision of existing and possible proposal for the establishment of new wine-growing zones in Croatia.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Ivan Prša1, Daniel Rašić2, Višnja Vučetić3, Maja Telišman Prtenjak4, Branimir Omazić4, Marko Karoglan5, Darko Preiner5 and Dragoslav Ivanišević6

1Croatian Center for Agriculture, Food and Rural Affairs, Centre for Viticulture, Enology and Edible Oils Analysis, Croatia
2Croatian Center for Agriculture, Food and Rural Affairs, Centre for Soils, Croatia
3Croatian Hydrometeorological Institute, Sector for Meteorological Research and Development, Department of Agrometeorology, Croatia
4Geofizički odsjek Prirodoslovno matematičkog  fakulteta Sveučilišta u Zagrebu, Croatia
5Faculty of Agriculture, University of Zagreb, Department of Viticulture and Enology, Croatia
6University of Novi Sad, Faculty of Agriculture, Serbia

Contact the author

Keywords

agroclimatic indices, climate, grapevine, viticultural zones

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Re-examination and meta-analysis of previous research as a tool to evaluate the suitability of rootstocks in adaptation to global change. A study case from Spanish viticulture

Meta-analysis (MA) is a method that allows statistical synthesis of the results of several similar individual studies (Figure 1). This term was introduced by Glass in 1976 as a useful tool for the scientific community to pool and summarise the enormous amount of information collected in the literature.

Impact of monopolar and bipolar pulsed electric fields on the quality of Tinta Roriz wines

Pulsed electric fields (pef) technology holds significant promise for the agrifood industry, considering the capacity of inducing cell electroporation, due to the disruption of cellular membranes. Pef-induced permeabilization is dependent of the chosen treatment protocol (i.e. Pulse shape, electrical field strength, specific energy) and of the matrix’s characteristics (i.e. Cell radii and size, ph, electrical conductivity).

Microclimatic differences in fruit zone of vineyards on different elevations of ‘nagy-eged hill’ in eger wine region, Hungary

The Bull’s Blood of Eger (‘Egri Bikavér’) is one of the most reputed red wines in Hungary and abroad, produced in the Northeastern part of the country.

Proposal of zonification and characterization of terroirs in the Yalde-Najerilla-Uruñuela vine growing area (DOC Rioja, Spain), based on the soil influence

Natural Terroir Units (NTU) are being delimited in vine growing area DOCa Rioja, in collaboration with Uruñuela Cooperative, to characterized specific and singular Tempranillo (Vitis vinifera

A blueprint for managing vine physiological balance at different spatial and temporal scales in Champagne

In Champagne, the vine adaptation to different climatic and technical changes during these last 20 years can be seen through physiological balance disruptions. These disruptions emphasize the general grapevine decline. Since the 2000s, among other nitrogen stress indicators, the must nitrogen has been decreasing. The combination of restricted mineral fertilizers and herbicide use, the growing variability of spring rainfall, the increasing thermal stress as well as the soil type heterogeneity are only a few underlying factors that trigger loss of physiological balance in the vineyards. It is important to weigh and quantify the impact of these factors on the vine. In order to do so, the Comité Champagne uses two key-tools: networking and modelization. The use of quantitative and harmonized ecophysiological indicators is necessary, especially in large spatial scales such as the Champagne appellation. A working group with different professional structures of Champagne has been launched by the Comité Champagne in order to create a common ecophysiology protocol and thus monitor the vine physiology, yearly, around 100 plots, with various cultural practices and types of soil. The use of crop modelling to follow the vine physiological balance within different pedoclimatic conditions enables to understand the present balance but also predict the possible disruptions to come in future climatic scenarios. The physiological references created each year through the working group, benefit the calibration of the STICS model used in Champagne. In return, the model delivers ecophysiology indicators, on a daily scale and can be used on very different types of soils. This study will present the bottom-up method used to give accurate information on the impacts of soil, climate and cultural practices on vine physiology.