terclim by ICS banner
IVES 9 IVES Conference Series 9 Reduced berry skin epi-cuticular wax and cutin accumulation associates with a genomic deletion and increased polyphenols extractability in a clone of Tempranillo Tinto 

Reduced berry skin epi-cuticular wax and cutin accumulation associates with a genomic deletion and increased polyphenols extractability in a clone of Tempranillo Tinto 

Abstract

Tempranillo Tinto (TT) is the third-most planted red wine variety in the world, and it is mostly grown in the Iberian Peninsula. Spontaneous somatic variation appearing during vegetative propagation can be exploited to improve elite varieties as Tempranillo Tinto, including the selection of new phenotypes enhancing berry quality. We described previously that a somatic variant of TT with darker fruit color, the clone VN21, exhibits increased extractability of polyphenols during the winemaking process. To unravel the molecular mechanism underlying this phenomenon, we performed whole-genome resequencing to compare VN21 to other TT clones, revealing a 10 Mb deletion in chromosome 11 that likely affected only the L1 meristem cell layer of VN21 and tissues derived from it, such as external cell layers of berry skin. A putative loss-of-function allele of an ABCG32 gene (homologous to cuticle biogenesis transporters), was left hemizygous in this segment after the deletion in VN21. Scanning electron microscopy images suggested a lower content epi-cuticular wax in the berry cuticle of VN21, which likely leads to the shiny colour of VN21 berries. A GC-MS analysis of epi-cuticular waxes and cutins extracted from berry skin and leaves confirmed a general decrease in the accumulation of cuticle constituent compounds in VN21, supporting a role for the mutated ABCG32 transporter in the phenotype. Our findings show that somatic mutations altering berry cuticle biogenesis can have an effect on the extractability of polyphenols from the berry skin, which could be exploited for varietal wine innovation.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Carolina Royo1*, Yolanda Ferradás1,2, Robin Bosman 3, Fernando Alba-Elías 4, Javier Ibáñez 1, Justin Lashbrooke 3, José Miguel Martínez-Zapater 1, Pablo Carbonell-Bejerano 1

1 Instituto de Ciencias de la Vid y del Vino, Finca La Grajera, Ctra. de Burgos Km. 6, 26007 Logroño. Spain
2 Current address: Facultad de Biología, Universidad de Santiago de Compostela, 15872 Santiago de Compostela. Spain
3 South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, South Africa
4 Universidad de La Rioja, Departamento de Ingeniería Mecánica, Logroño, Spain

Contact the author*

Keywords

somatic variation, whole genome resequencing, deletion, waxes, GC-MS

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

NEW TREATMENTS FOR TEMPRANILLO WINES BY USING CABERNET SAUVIGNON VINE-SHOOTS AND MICRO-OXYGENATION

Toasted vine-shoots as enological additive represents a promising topic due to their significant effect on wine profile. However, the use of this new enological tool with SEGs varieties different than wine and combined with others winemaking technologies, such as micro-oxygenation (MOX), has not been studied so far, despite this combination could result in wine with high chemical and organoleptic quality.

Antimicrobial activity of oenological polyphenols against Gram positive and Gram negative intestinal multidrug-resistant bacteria

Bacterial antibiotic resistance is a major current health problem. Polyphenols have demonstrated antibacterial activity, and in this work we studied the effect of oenological polyphenols on the growth of intestinal multidrug-resistant strains of human and animal origin. Two Enterococcus faecium strains, resistant to vancomycin and other antibiotics, and four Escherichia coli strains, resistant to ampicillin and other antibiotics, were included in this study. All strains showed multidrug resistant phenotypes and genotypes to at least two antibiotic families.

Selecting green cover species in the under-trellis zone of Lower Austrian vineyards

The under-trellis zone of vineyards is a sensitive area through which vines cover a significant portion of their nutrient and water needs. Mechanical and chemical methods are applied to suppress competing and tall-growing weeds to ensure optimal vine growth conditions. In addition to higher operating costs and depending on the soil conditions, these practices might lead to a long-term reduction in soil fertility and biodiversity. The presented study aims to analyse the suitability and interspecies competition of a selected green cover mixture of five local herbaceous species as potential green cover mixture in the under-trellis area of Lower Austrian vineyards.

High pressure homogenization of wine lees. A tool to streamline the management of wine ageing

Aging on lees (AOL) has been used for wine aging for a long time, thanks to its ability to modify wine composition, improving sensory characteristics and stability. However, the prolonged contact with fermentation lees may increase the risk of developing sensory defects, due to the growth of unwanted microorganisms. Furthermore, AOL requires a large amount of work to manage bâtonnage and for topping up the barrels, significantly increasing production costs.

Application of a low-cost device VIS-NIRs-based for polyphenol monitoring during the vinification process

In red wine production, phenolic maturity is becoming increasingly important. Anthocyanins, flavonoids and total polyphenols content and availability significantly influence the harvest time of wine grapes while, during vinification process, their extraction strongly affects wine body, color and texture