terclim by ICS banner
IVES 9 IVES Conference Series 9 Grape must quality and mesoclimatic variability in Fruška Gora wine-growing region, Serbia

Grape must quality and mesoclimatic variability in Fruška Gora wine-growing region, Serbia

Abstract

The Fruška Gora mountain is a traditional wine-growing region in Serbia situated in the Pannonian Basin. Due to such a position, the vicinity of the Danube River and the presence of concave configuration, it is suitable for grape production. This paper provides analyses of spatial variations in meteorological parameters and grape juice quality within Fruška Gora wine region over three consecutive vintages (2018-2020). The examined period can be defined as warm with cool nights during September (AVG 18,9°C; GDD 1918°C; CI 12°CF) and with the presence of mesoclimatic variability. The East part of the study area was somewhat drier and hotter compared to other parts of the region. The analyses of grape must samples (190 in total) of five cultivars (Cabernet-Sauvignon, Merlot, Chardonnay, Sauvignon blanc and Grašac (Welschriesling)) commonly grown across the region (19 sites), were performed using Fourier Transform Infrared Technology (FTIR). Among all cultivars, Sauvignon blanc was harvested first in the East area (DOY=246±5, GDD at harvest=1552±74, 22.2±0.7 °Brix), while the latest harvest was recorded for Cabernet-Sauvignon in the West (DOY=283±5, GDD at harvest=1936±187, 23.4±1.0 °Brix ). Both the red and white cultivars had higher acidity and YAN in the grape must if the vines were grown in the North and East compared to South and West areas. According to PCA analysis, Grašac showed the lowest variation in grape must chemical composition. Thus, the results confirm that Grašac is the most stable cultivar in Fruška Gora. All monitored cultivars reached technological fruit ripeness by the end of the growing season. However, it was difficult to reach full ripeness of red cultivars, mostly beacuse of uncoupling of technolocical and phenolic ripeness. Thus, Cabernet-Sauvignon had higher variations in GDD sums at harvest compared to other cultivars, which probably increased variations in grape must quality.

DOI:

Publication date: May 31, 2022

Issue:Terclim 2022

Type: Poster

Authors

Mladen Kalajdžić1, Dragoslav Ivanišević1, Ivan Kuljančić1, Nenad Antonić1, Dragan Milošević2 and Predrag Božović1

 

1University of Novi Sad, Faculty of Agriculture, Novi Sad, Serbia
2Department of Geography, Tourism and Hotel Management, Faculty of Sciences, University of Novi Sad, Serbia

Contact the author

Keywords

Fruška Gora, grape must, quality, mesoclimatic variability, Grašac

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Biodiversity and biocontrol ability of Trichoderma natural populations in soil vineyards from Castilla y León region (Spain)

Trichoderma is a microorganism present in many agricultural soils and some of its species could be used as natural biological control agents. In this work, the presence of natural populations of Trichoderma was estimated in soil vineyard and its biocontrol capacity against Phaeoacremonium minimum, one of the main agent causals of grapevine trunk diseases instead of using pesticides. Moreover, physicochemical variables in soil such as pH, organic matter and nutrients were evaluated to determine a possible correlation to natural populations of Trichoderma.

Plant biostimulants in combination treatments as environmentally-friendly rest-breaking agents for dormancy release in table grapes Vitis vinifera Crimson Seedless

Context and purpose of the study. Vitis vinifera grapevine is a perennial crop which is globally cultivated, surviving cold winters in temperate zones by entering a state of dormancy.

Evaluation of sap flow and trunk diameter measurements in grapevines using time series decomposition

Grapevines are very sensitive to weather conditions. Excessively hot and dry periods trigger the activation of survival mechanisms, such as reduction of crop transpiration and the redistribution of water. Monitoring these mechanisms is, therefore, essential to better understand the grapevine water dynamics and maximize water-use efficiency.

New oenological technology for adaptation to climate change: reduction of alcohol content during wine fermentation through stripping, with fermentative CO2

The capture and valorization of fermentative CO2 have been developed for several years by the company w platform for internal uses, notably in the cellars: inerting, cooling, reduction of water consumption, extraction, with aroma valorization. In a context of climatic warming during the vegetative cycle, grapes are currently harvested with a significant sugar concentration, a phenomenon that is expected to intensify in the coming decades. The high alcohol content of the resulting wines goes against the demand of customers who are seeking high-quality wines with less alcohol.

On the losses of dissolved CO2 during champagne aging

A misconception lingers in the minds of some wine consumers that Champagne wines don’t age. It’s largely a myth, certainly as far as the best cuvees are concerned. Actually, during the so-called autolysis period of time (in the closed bottle, after the “prise de mousse”), complex chemical reactions take place when the wine remains in contact with the dead yeast cells, which progressively bring complex and very much sought-after aromas to champagne. Nevertheless, despite their remarkable impermeability to liquid and air, caps or natural cork stoppers used to cork the bottles are not 100% hermetic with regard to gas transfers. Gas species therefore very slowly diffuse through the cap or cork stopper, along their respective inverse partial pressure. After the “prise de mousse”, because the partial pressure of CO2 in the bottleneck reaches up to 6 bars (at 12 °C), gaseous CO2 progressively diffuse from the bottle to the ambient air
(where the partial pressure of gaseous CO2 is only of order of 0,0004 bar).