terclim by ICS banner
IVES 9 IVES Conference Series 9 Grape must quality and mesoclimatic variability in Fruška Gora wine-growing region, Serbia

Grape must quality and mesoclimatic variability in Fruška Gora wine-growing region, Serbia

Abstract

The Fruška Gora mountain is a traditional wine-growing region in Serbia situated in the Pannonian Basin. Due to such a position, the vicinity of the Danube River and the presence of concave configuration, it is suitable for grape production. This paper provides analyses of spatial variations in meteorological parameters and grape juice quality within Fruška Gora wine region over three consecutive vintages (2018-2020). The examined period can be defined as warm with cool nights during September (AVG 18,9°C; GDD 1918°C; CI 12°CF) and with the presence of mesoclimatic variability. The East part of the study area was somewhat drier and hotter compared to other parts of the region. The analyses of grape must samples (190 in total) of five cultivars (Cabernet-Sauvignon, Merlot, Chardonnay, Sauvignon blanc and Grašac (Welschriesling)) commonly grown across the region (19 sites), were performed using Fourier Transform Infrared Technology (FTIR). Among all cultivars, Sauvignon blanc was harvested first in the East area (DOY=246±5, GDD at harvest=1552±74, 22.2±0.7 °Brix), while the latest harvest was recorded for Cabernet-Sauvignon in the West (DOY=283±5, GDD at harvest=1936±187, 23.4±1.0 °Brix ). Both the red and white cultivars had higher acidity and YAN in the grape must if the vines were grown in the North and East compared to South and West areas. According to PCA analysis, Grašac showed the lowest variation in grape must chemical composition. Thus, the results confirm that Grašac is the most stable cultivar in Fruška Gora. All monitored cultivars reached technological fruit ripeness by the end of the growing season. However, it was difficult to reach full ripeness of red cultivars, mostly beacuse of uncoupling of technolocical and phenolic ripeness. Thus, Cabernet-Sauvignon had higher variations in GDD sums at harvest compared to other cultivars, which probably increased variations in grape must quality.

DOI:

Publication date: May 31, 2022

Issue:Terclim 2022

Type: Poster

Authors

Mladen Kalajdžić1, Dragoslav Ivanišević1, Ivan Kuljančić1, Nenad Antonić1, Dragan Milošević2 and Predrag Božović1

 

1University of Novi Sad, Faculty of Agriculture, Novi Sad, Serbia
2Department of Geography, Tourism and Hotel Management, Faculty of Sciences, University of Novi Sad, Serbia

Contact the author

Keywords

Fruška Gora, grape must, quality, mesoclimatic variability, Grašac

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Applications of FTIR microspectroscopy in oenology: shedding light on Saccharomyces cerevisiae cell wall composition and autolytic capacity

Many microbial starters for the alcoholic and malolactic fermentation processes are commercially available, indicated for diverse wine styles and quality goals. The screening protocols cover a wide range of oenologically relevant features, although some characteristics could also be studied using underexplored powerful techniques. In this study, we applied Fourier Transform Infrared (FTIR) microspectroscopy [1,2] to compare the cell wall biochemical composition and monitor the autolytic process in several wine strains of Saccharomyces cerevisiae.

Water and nutritional savings shape non-structural carbohydrates in grapevine (Vitis vinifera L.) cuttings

Global changes and sustainability challenge researchers in saving water and nutrients. The response of woody crops, which can be forced at facing more drought events during their life, is particularly important. Vitis vinifera can be an important model for its relevance in countries subjected to climate changes and its breeding, requiring cuttings plantation and strong pruning.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.

Spatial variability of temperature is linked to grape composition variability in the Saint-Emilion winegrowing area

Elevated temperature during the grape maturation period is a major threat for grape quality and thus wine quality. Therefore, characterizing the grape composition response to temperature at a larger scale would represent a crucial step towards adaptation to climate change. In response to changes in temperature, various physiological mechanisms regulate grape composition. Primary and secondary metabolisms are both involved in this response, with well-known effects, for example on anthocyanins, and lesser known effects, for example on aromas or aroma precursors. At the field scale or at the regional scale, however, numerous environmental or plant-specific factors intervene to make the effects of temperature difficult to distinguish from overall variability. In this study, it was attempted to overcome this difficulty by selecting well-characterized situations with differing temperatures.
A long-term study of air temperature variability across several Merlot vineyards in the Saint-Emilion and Pomerol wine producing area found significant temperature differences and gradients at various time scales linked to environmental factors. From this study area, a few sites were selected with similar age, soil and training system conditions, and with repeated and contrasted temperature differences during the maturation period. The average temperature difference during the maturation period was about 2°C between cooler and warmer sites, a difference similar to that expected under future climate change scenarios. In close vicinity to the temperature sensors at each site, grape berries were sampled at different times until full maturity during 2019 and 2020. Also, berries from bunches on either side of the row were analyzed separately, allowing an investigation of bunch exposure effect associated with the coupling of berry temperature and solar radiation. Four replicates of pooled berries for each time – site – bunch exposure combination were obtained and analyzed for biochemical composition. Analyses of variance of the biochemical composition data collected at different sampling times reveal significant effects associated with temperature, site, and bunch azimuth. For instance, anthocyanins in grape skins are clearly influenced by temperature and solar radiation exposure, with up to 30% reduction in warmer conditions.

Application of cyclic voltammetry to the classification of enological tannins in relationship to oxygen consumption rate and botanical origin 

Enological tannins are a diversified group of winemaking products that vary in several aspects such as chemical composition, botanical origin, and production method. In consideration of their richness in phenolic compounds, one of their main application in vinification is related to their antioxidant capacity, in particular their ability to consume oxygen during red wine maturation.