Terroir 2004 banner
IVES 9 IVES Conference Series 9 Climatic potential to produce grapes for wine-making in the tropical north region of Minas Gerais State, Brazil

Climatic potential to produce grapes for wine-making in the tropical north region of Minas Gerais State, Brazil


The tropical north region of Minas Gerais State is one of the least developed of Brazil and viticulture could be an alternative to develop its agriculture zone. The objective of this work was to evaluate the wine grape production climatic potential of that region. The evaluations were carried out employing the Multicriteria Climatic Classification System (Geoviticulture MCC System), that utilizes three reference climatic indexes (Dryness Index – DI, Heliothermal Index – HI and Cool Night Index – CNI). This study integrates the concept of viticultural climate with intra-annual variability, that corresponds to the regions that, under natural climate conditions, change viticultural climate class as a result of the time of the year at which grapes can be produced – a definition to be used for regions with a hot climate where it is possible to have more than one grape harvest per year. Three locations – Pirapora (17º 21’S, 44º56’W, 489m), Montes Claros (16º43’S, 43º52’W, 647m) and Diamantina (18º15’S, 43º36’W, 1297m) – and two potential production cycles along the year – October-March (summer period) and April-September (winter period) – were evaluated. The results showed that in the summer period Pirapora and Montes Claros presented monthly average maximum temperature values (Tmax) varying from 29,4 ºC to 31,7 ºC, average minimum temperatures (Tmin) between 17,7 ºC and 20,4 ºC, and precipitation (P) varying from 76,8 mm to 223,8 mm, representing a ‘humid, very warm and with warm nights’ class of viticultural climate, according to MCC System. This climatic condition is similar to the summer period condition of the Brazilian San Francisco Valley (9º23’S, 40º29’W, 371,7m) grape-growing region, although with a higher DI. For the winter period, those two regions presented Tmax between 27,1ºC and 31,7ºC, Tmin between 12,1ºC and 18,2ºC, and P between 1,8 mm to 51,4 mm representing a ‘moderately dry, warm and with temperate nights’ according MCC System. Otherwise, the Diamantina summer period presented Tmax values between 24,4ºC and 25,3ºC, Tmin varying from 15,6ºC to 17,3ºC and P values between 99,2mm and 261,2mm, representing a ‘humid, temperate warm and with temperate nights’ viticultural climate. In the winter period, Diamantina Tmax values varied from 20,9ºC to 24,0ºC, Tmin varied between 11,8ºC and 15,9ºC and P varied between 7,8mm and 58,1mm. These values represent a ‘subhumid, temperate and with cool nights’ viticultural climate. Based on those results it can be concluded that the north region of Minas Gerais State has a great climatic potential to became a grape-growing for wine-making region, specially on the winter period, when the region viticultural climate presents conditions where vine will potentially face a certain level of dryness, an heliothermal global regime between temperate warm and warm, and with cool to temperate nights. The viticultural climate with intra-annual variability of the region, that offers a potential to produce grapes in the tropical winter period, represents a particular condition in relation to the world classic geoviticulture. The climatic groups of the regions with possibility to produce in the non classic periods of the year must be considered in the context of the tropical viticulture climate, presenting a distinct seasonal thermic evolution dynamic.


Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article


M.A.F Conceição (1) and J. Tonietto (2)

(1) Brazilian Agriculture Research Company (Embrapa), Grape and Wine National Research Center, Tropical Viticulture Experimental Station, PO Box 241, 15700-000, Jales, SP, Brazil
(2) Brazilian Agriculture Research Company (Embrapa), Grape and Wine National Research Center, PO Box 130, 95700-000, Bento Gonçalves, RS, Brazil

Contact the author


IVES Conference Series | Terroir 2004


Related articles…

Chemical and sensory characterization of Xinomavro PDO red wine

Aroma is considered one of the most important factors in determining the quality and character of wine. The relationship between wine character and its volatile composition is recognized by several researchers worldwide. Since these compounds influence the sensory perceptions of consumers, both volatile composition and sensory properties are essential in determining wine aroma characteristics.

Volatile composition of Cabernet Sauvignon wines from Argentina, Portugal and Spain

Cabernet Sauvignon is one of the most cultivated grape varieties worldwide being grown in different environmental conditions due to its excellent adaptability. Volatile compounds deeply contribute to the sensory properties of wines therefore to wine quality. The aim of this work was to compare the aroma profile of Cabernet Sauvignon wines from different geographical areas and climatic conditions, namely from Argentina, Portugal and Spain, from the vintage 2022. In addition, the volatile composition of the Cabernet Sauvignon Portuguese wines from three vintages was evaluated.

Bilan hydrique: une méthode proposée pour l’évaluation des réserves hydriques dans le zonage viticole

Dans le zonage viticole mis en place dans la province de Taranto, on a introduit la méthode du bilan hydrique pour évaluer les réserves hydriques dans les 8 zones déterminées

The performance of grapevines on identified terroirs in Stellenbosch, South Africa

A terroir can be defined as a natural unit that is characterised by a specific agricultural potential, which is imparted by natural environmental features, and is reflected in the characteristics of the final product.

Leaf removal to regulate fruit ripening in Cabernet-Sauvignon

Aim: Under the effects of climate change it is becoming increasingly common to observe excessively fast sugar accumulation while anthocyanin and flavour development are lagging behind. Understanding the impact of different leaf removal techniques on ripening will provide vineyard managers with a canopy management strategy suitable for