terclim by ICS banner
IVES 9 IVES Conference Series 9 Low-cost sensors as a support tool to monitor soil-plant heat exchanges in a Mediterranean vineyard

Low-cost sensors as a support tool to monitor soil-plant heat exchanges in a Mediterranean vineyard

Abstract

Mediterranean viticulture is increasingly exposed to more frequent extreme conditions such as heat waves. These extreme events co-occur with low soil water content, high air vapor pressure deficit and high solar radiant energy fluxes and result in leaf and berry sunburn, lower yield, and berry quality, which is a major constraint for the sustainability of the sector. Grape growers must find ways to proper and effectively manage heat waves and extreme canopy and berry temperatures. Irrigation to keep soil moisture levels and enable adequate plant turgor, and convective and evaporative cooling emerged as a key tool to overcome this major challenge. The effects of irrigation on soil and plant water status are easily quantifiable but the impact of irrigation on soil and canopy temperature and on heat convection from soil to cluster zone remain less characterized. Therefore, a more detailed quantification of vineyard heat fluxes is highly relevant to better understand and implement strategies to limit the effects of extreme weather events on grapevine leaf and berry physiology and vineyards performance. Low-cost sensor technologies emerge as an opportunity to improve monitoring and support decision making in viticulture. However, validation of low-cost sensors is mandatory for practical applicability. A two-year study was carried in a vineyard in Alentejo, south of Portugal, using low-cost thermal cameras (FLIR One, 80×60 pixels and FLIR C5, 160×120 pixels, 8-14 µm, FLIR systems, USA) and pocket thermohygrometers (Extech RHT30, EXTECH instruments, USA) to monitor grapevine and soil temperatures. Preliminary results show that low-cost cameras can detect severe water stress and support the evaluation of vertical canopy temperature variability, providing information on soil surface temperature. All these thermal parameters can be relevant for soil and crop management and be used in decision support systems.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Ricardo Egipto1, Maria Neves2, Mariana Mota2, Carlos Lopes2, José Silvestre1 and Joaquim Costa2 

1INIAV, Instituto Nacional de Investigação Agrária e Veterinária, Dois Portos, Portugal
2LEAF, Instituto Superior de Agronomia, Lisboa, Portugal

Contact the author

Keywords

vineyard, thermography, temperature profiles, stress, genotypes, decision support systems

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

From vineyard to a glass of wine: the effect of abscisic acid application on mouhtaro, a rare autochthonous variety of greece

In a context of a sustainable viticulture, a new uprising strategy to improve grape and wine composition (or quality) is the exogenous application of plant activators(Gil-Muñoz et al., 2017)

Unveiling the chemical headspace of sparkling wine glasses by laser spectroscopy

Right after serving a sparkling wine into a glass, thousands of rising and bursting bubbles convey gas-phase CO2 and volatile organic compounds (VOCs) in the headspace above the champagne surface, thus progressively modifying the gaseous chemical space perceived by the consumer [1].

An overview of geological influences on South African vineyards

The role of soils and bedrock geology has long been acknowledged as a fundamental component of terroir. In South Africa the influence of geology is misunderstood and some important geological components will be highlighted in this paper.

Developing an integrated viticulture in the upper part of the hill Somló

The hill Somló looks like a huge island wich jumps out of the see, a few kilometers away from the slope of Bakony highland and on the edge of the Hungarian small plane.

Interaction among grapevine cultivars (Sangiovese, Cabernet-Sauvignon and Merlot) and site of cultivation in Bolgheri (Tuscany)

Different “landscape unit” have been identified in Bolgheri area (a viticultural appellation in the Tirrenian coast of Tuscany) by the aid of pedological, landscape and agronomic observations in the 1992-1993 period. In all cultivar (Sangiovese, Cabernet Sauvignon and Merlot) x landscape unit combinations, experimental plots were chosen in homogeneous vineyards, single cordon trained (about 3300-4500 vines/hectare). Grape maturation was studied by weekly samples of berries from veraison to vintage in the 1992-1995 period. At harvest yield and must composition traits were measured and, from the most représentative plots, sixty kilograms of grapes were harvested each year and vinified according to a standardised scheme. Wines were evaluated by standard chemical and sensory analyses.