terclim by ICS banner
IVES 9 IVES Conference Series 9 Low-cost sensors as a support tool to monitor soil-plant heat exchanges in a Mediterranean vineyard

Low-cost sensors as a support tool to monitor soil-plant heat exchanges in a Mediterranean vineyard

Abstract

Mediterranean viticulture is increasingly exposed to more frequent extreme conditions such as heat waves. These extreme events co-occur with low soil water content, high air vapor pressure deficit and high solar radiant energy fluxes and result in leaf and berry sunburn, lower yield, and berry quality, which is a major constraint for the sustainability of the sector. Grape growers must find ways to proper and effectively manage heat waves and extreme canopy and berry temperatures. Irrigation to keep soil moisture levels and enable adequate plant turgor, and convective and evaporative cooling emerged as a key tool to overcome this major challenge. The effects of irrigation on soil and plant water status are easily quantifiable but the impact of irrigation on soil and canopy temperature and on heat convection from soil to cluster zone remain less characterized. Therefore, a more detailed quantification of vineyard heat fluxes is highly relevant to better understand and implement strategies to limit the effects of extreme weather events on grapevine leaf and berry physiology and vineyards performance. Low-cost sensor technologies emerge as an opportunity to improve monitoring and support decision making in viticulture. However, validation of low-cost sensors is mandatory for practical applicability. A two-year study was carried in a vineyard in Alentejo, south of Portugal, using low-cost thermal cameras (FLIR One, 80×60 pixels and FLIR C5, 160×120 pixels, 8-14 µm, FLIR systems, USA) and pocket thermohygrometers (Extech RHT30, EXTECH instruments, USA) to monitor grapevine and soil temperatures. Preliminary results show that low-cost cameras can detect severe water stress and support the evaluation of vertical canopy temperature variability, providing information on soil surface temperature. All these thermal parameters can be relevant for soil and crop management and be used in decision support systems.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Ricardo Egipto1, Maria Neves2, Mariana Mota2, Carlos Lopes2, José Silvestre1 and Joaquim Costa2 

1INIAV, Instituto Nacional de Investigação Agrária e Veterinária, Dois Portos, Portugal
2LEAF, Instituto Superior de Agronomia, Lisboa, Portugal

Contact the author

Keywords

vineyard, thermography, temperature profiles, stress, genotypes, decision support systems

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Terroir characterization from cv. Merlot and Sauvignon plots follow-up within the scope of wine-production : “Vins de Pays Charentais” in the Cognac eaux-de-vie vineyard area

Dans les études des terroirs, il est souvent délicat d’établir des zonages et de mesurer les effets de l’environnement sur les vins. Avec plus d’un million d’hectares dans l’aire d’appellation délimitée, le terroir du célèbre vignoble de Cognac est bien connu pour ces eaux-de-vie et ainsi divisé en 6 crus.

Exploring the mechanisms of grapevine single berry development and ripening

The strategy of single berry phenotyping is a recently rediscovered research tool that has gained great attention. The latest studies have indicated that previous physiological models based on pooling asynchronous populations of berries provided biased or blurred information on berry development key players. The possibility of monitoring and sampling single synchronized berries to study their development sequentially has opened new lines of research aimed at unraveling the genes that regulate grapevine fruit development. This study aimed to decipher the gene pathways responsible for the activation/deactivation of physiological processes involved in the green phase of growth, the onset of ripening, and the second growth phase.

Sensory and chemical effects of postharvest grape cooling on wine quality

Wine cellars are affected by seasonally fluctuating workloads and face challenges especially in the harvest period connected to the required timely processing of the harvested grapes.

POTENTIAL OF PEPTIDASES FOR AVOIDING PROTEIN HAZES IN MUST AND WINE

Haze formation in wine during transportation and storage is an important issue for winemakers, since turbid wines are unacceptable for sale. Such haze often results from aggregation of unstable grape proteinaceous colloids. To date, foreseeably unstable wines need to be treated with bentonite to remove these, while excessive quantities, which are often required, affect the wine volume and quality (Cosme et al. 2020). One solution to avoid these drawbacks might be the use of peptidases. Marangon et al. (2012) reported that Aspergillopepsins I and II were able to hydrolyse the respective haze-relevant proteins in combination with a flash pasteurisation. In 2021, the OIV approved this enzymatic treatment for wine stabilisation (OIV-OENO 541A and 541B).

Protection juridique du terroir viticole en France

The diversity of potential sources of damage to the terroir of an appellation (physical, aesthetic, ecological damage, damage to the image, to collective representation or even, in a broad concept which will not be retained here, to the geographical name identifying the terroir) is accompanied by a fragmentation of the legal sources allowing its protection.