terclim by ICS banner
IVES 9 IVES Conference Series 9 Grapevine yield estimation in a context of climate change: the GraY model

Grapevine yield estimation in a context of climate change: the GraY model

Abstract

Grapevine yield is a key indicator to assess the impacts of climate change and the relevance of adaptation strategies in a vineyard landscape. At this scale, a yield model should use a number of parameters and input data in relation to the information available and be able to reproduce vineyard management decisions (e.g. soil and canopy management, irrigation). In this study, we used data from six experimental sites in Southern France (cv. Syrah) to calibrate a model of grapevine yield limited by water constraint (GraY). Each yield component (bud fertility, number of berries per bunch, berry weight) was calculated as a function of the soil water availability simulated by the WaLIS water balance model at critical phenological phases. The model was then evaluated in 10 grapegrowers’ plots, covering a diversity of biophysical and technical contexts (soil type, canopy size, irrigation, cover crop). We identified three critical periods for yield formation: after flowering on the previous year for the number of bunches and berries, around pre-veraison and post-veraison of the same year for mean berry weight. Yields were simulated with a model efficiency (EF) of 0.62 (NRMSE = 0.28). Bud fertility and number of berries per bunch were more accurately simulated (EF = 0.90 and 0.77, NRMSE = 0.06 and 0.10, respectively) than berry weight (EF = -0.31, NRMSE = 0.17). Model efficiency on the on-farm plots reached 0.71 (NRMSE = 0.37) simulating yields from 1 to 8 kg/plant. The GraY model is an original model estimating grapevine yield evolution on the basis of water availability under future climatic conditions.  It allows to evaluate the effects of various adaptation levers such as planting density, cover crop management, fruit/leaf ratio, shading and irrigation, in various production contexts.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Audrey Naulleau1, Laure Hossard2, Laurent Prévot3, Christian Gary1

1ABSys, Univ Montpellier, INRAE, CIRAD, Institut Agro, Ciheam-IAMM, Montpellier, France
2Innovation, Univ Montpellier, INRAE, CIRAD, Institut Agro, Montpellier, France
3LISAH, Univ Montpellier, INRAE, IRD, Institut Agro, Montpellier, France

Contact the author

Keywords

semi-empirical model, grape yield, water constraint, climate change, vineyard management

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Exploring the genetic diversity of leaf flavonoids content in a set of Iberian grapevine cultivars: preliminary results

The use of grapevine genetic diversity is a way to mitigate the negative impacts of climate change on viticulture systems. Leaf epidermal flavonoids (including flavonols and anthocyanins) are involved in plant defense mechanisms against environmental stresses, like high temperatures or excessive solar radiation [1,2]. Among other factors, they modulate light absorption, which reduces photoinhibition processes in photosynthetic tissues [1]. Therefore, the identification of grapevine cultivars with an increased content on leaf epidermal flavonoids arises as a potential avenue to improve grapevine tolerance to some detrimental environmental stresses.

Exploring intra-vineyard variability with sensor- and molecular-based approaches 

The application of remote and proximal sensing is a fast and efficient method to monitor grapevine vegetative and physiological parameters and is considered valuable to derive information on associated yield and quality traits in the vineyard. Further details can be obtained by the application of molecular analysis at the gene expression level aiming at elucidating how pathways controlling the formation of different grape quality traits are influenced by spatial variability. This work aims at evaluating intra-vineyard variability in grape composition at harvest and at comparing this with remotely sensed canopy vegetation data and molecular-based approaches.

INFLUENCES OF SO2 ADDITION AND STORAGE CONDITIONS IN THE DETERMINATION OF MEAN DEGREE OF POLYMERIZATION OF PROANTHOCYANIDINS IN AGED RED WINES

The structural diversity is one of the most remarkable characteristics of proanthocyanidins (PA). Indeed, PA in wines may vary in the B-ring and C-ring substitutes, the C-ring stereochemistry, the degree of polymerization (DP) and the linkage between the monomers. Knowing in detail the structural characteristics of the PA of a wine can help us to understand and modulate several sensorial characteristics of the wine, such as color, antioxidant properties, flavor, and mouthfeel properties. In the last years was discovered and confirmed the presence of sulfonated monomeric and oligomeric flavan-3-ols in wine [1], as well as was pointed out their importance in wine quality [1,2].

A new winemaking technology: fermentation, aging and bottling without added additives and preservatives

Auric infinity Technology introduces three new patented products designated for fermentation, aging and bottling without added additives and preservatives that have never been used in the winemaking industry.

Grapevine nitrogen retrieval by hyperspectral sensing at the leaf and canopy level

Grapevine nitrogen (N) monitoring is essential for efficient N management plans that optimize fruit yield and quality while reducing fertilizer costs and the risk of environmental contamination. Unlike traditional vegetative-tissue sampling methods, remote sensing technologies, including hyperspectral imaging, have the potential to allow monitoring of the N status of entire vineyards at a per-vine resolution. However, differential N partitioning, variable spectral properties, and complex canopy structures hinder the development of a robust N retrieval algorithm. The present study aimed to establish a solid understanding of vine spectroscopic response at leaf and canopy levels by evaluating the different nitrogen retrieval approaches, including the radiative transfer model.