terclim by ICS banner
IVES 9 IVES Conference Series 9 20-Year-Old data set: scion x rootstock x climate, relationships. Effects on phenology and sugar dynamics

20-Year-Old data set: scion x rootstock x climate, relationships. Effects on phenology and sugar dynamics

Abstract

Global warming is one of the biggest environmental, social, and economic threats. In the Douro Valley, change to the climate are expected in the coming years, namely an increase in average temperature and a decrease in annual precipitation. Since vine cultivation is extremely vulnerable and influenced by the climate, these changes are likely to have negative effects on the production and quality of wine.
Adaptation is a major challenge facing the viticulture sector where the choice of plant material plays an important role, particularly the rootstock as it is a driver for adaptation with a wide range of effects, the most important being phylloxera, nematode and salt, tolerance to drought and a complex set of interactions in the grafted plant.
In an experimental vineyard, established in the Douro Region in 1997, with four randomized blocs, with five varieties, Touriga Nacional, Tinta Barroca, Touriga Franca and Tinta Roriz, grafted in four rootstocks, Rupestris du Lot, R110, 196-17C, R99 and 1103P, data was collected consecutively over 20 years (2001-2020). Phenological observations were made two to three times a week, following established criteria, to determine the average dates of budbreak, flowering and veraison. During maturation, weekly berry samples were taken to study the dynamics of sugar accumulation, amongst other parameters. Climate data was collected from a weather station located near the vineyard parcel, with data classified through several climatic indices.
The results achieved show a very low coefficient of variations in the average date of the phenophases and an important contribution from the rootstock in the dynamic of the phenology, allowing a delay in the cycle of up to10-12 days for the different combinations. The Principal Component Analysis performed, evaluating trends in the physical-chemical parameters, highlighted the effect of the climate and rootstock on fruit quality by grape varieties.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Fernando Alves1, Joana Valente1, Frank S. Rogerson1, Ricardo Silva1, Cristina Carlos2,3, Catarina Barbosa2, Ana Morais2, Charles Symington1

1Symington Family Estates, Vinhos S.A. – Vila Nova de Gaia, Portugal
1ADVID Associação para o Desenvolvimento da Viticultura Duriense, Vila Real, Portugal
3CITAB, University of Trás-os-Montes and Alto Douro, Vila Real, PT

Contact the author

Keywords

climate, Douro, maturation, phenology, rootstock

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Yield prediction assessment before bloom and at veraison in a cv. Airén high yielding vineyard in Toledo (La Mancha, Spain)

Anticipation in the possible responses of grapevines to environmental variations is key to adjust field work in view of a more effective management. This idea has been the driving force behind the current work, which seeks to understand the interaction patterns of the vine with its habitat throughout the growing cycle.

Regulated deficit irrigation and crop load interaction effects on grape heterogeneity

Aim: To investigate the interaction effects between irrigation and crop load and the resulting impact on grape heterogeneity within a Geographical Indication in South Australia. 

Methods and Results: Cabernet Sauvignon grapes were sampled at the time of harvest from the Coonawarra

Effects of the synergy between T. delbrueckii and S. cerevisiae in the winemaking of traditional cultivars from southeastern Italy

The combination of Torulaspora delbrueckii and Saccharomyces cerevisiae in co-inoculation and sequential inoculation in winemaking was investigated as an innovative strategy to increase the aromatic profile of wines like Verdeca and Nero di Troia wines, two traditional varieties from south-eastern Italy (Apulia Region).

Vineyard altitude as a climate change adaptation strategy and its effect on Riesling during grapes and wine composition during ripening

Climate is one of the main drivers of spatial and temporal variability in grapevine physiology and therefore a key determinant of grape composition and final wine value. The world has warmed 1.1 °C since pre-industrial times, and the latest IPCC report indicates an additional 0.5 to 1.3 °C of warming by mid-century with continental locations warming at a greater rate than the oceans.

Evaluation of terroir suitability for vine cultivation in new areas using geographic multi-criteria decision support

Based on historical vine cultivation, the recent development of wine production in Drama wine region (Greece) has led to vine cultivation expansion of white and red varieties. The current cultivation of 500 ha of vineyards is expected to increase in the coming years. Natural terroir units (NTU) have been designed recently to support the production of high quality wines in the region [1]. The aim of this work is to evaluate the relevancy of the proposed NTUs regarding their suitability to produce wines of specific sensorial identity, and to provide guidelines for correct site selection for the expanding wine industry of the region.