terclim by ICS banner
IVES 9 IVES Conference Series 9 Optimizing stomatal traits for future climates

Optimizing stomatal traits for future climates

Abstract

Stomatal traits determine grapevine water use, carbon supply, and water stress, which directly impact yield and berry chemistry. Breeding for stomatal traits has the strong potential to improve grapevine performance under future, drier conditions, but the trait values that breeders should target are unknown. We used a functional-structural plant model developed for grapevine (HydroShoot) to determine how stomatal traits impact canopy gas exchange, water potential, and temperature under historical and future conditions in high-quality and hot-climate California wine regions (Napa and the Central Valley). Historical climate (1990-2010) was collected from weather stations and future climate (2079-99) was projected from 4 representative climate models for California, assuming medium- and high-emissions (RCP 4.5 and 8.5). Five trait parameterizations, representing mean and extreme values for the maximum stomatal conductance (gmax) and leaf water potential threshold for stomatal closure (Ψsc), were defined from meta-analyses. Compared to mean trait values, the water-spending extremes (highest gmax or most negative Ysc) had negligible benefits for carbon gain and canopy cooling, but exacerbated vine water use and stress, for both sites and climate scenarios. These traits increased cumulative transpiration by 8 – 17%, changed cumulative carbon gain by -4 – 3%, and reduced minimum water potentials by 10 – 18%. Conversely, the water-saving extremes (lowest gmax or least negative Ψsc) strongly reduced water use and stress, but potentially compromised the carbon supply for ripening. Under RCP 8.5 conditions, these traits reduced transpiration by 22 – 35% and carbon gain by 9 – 16% and increased minimum water potentials by 20 – 28%, compared to mean values. Overall, selecting for more water-saving stomatal traits could improve water-use efficiency and avoid the detrimental effects of highly negative canopy water potentials on yield and quality, but more work is needed to evaluate whether these benefits outweigh the consequences of minor declines in carbon gain for fruit production.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Megan Bartlett1 and Rami Albasha2,3

1Department of Viticulture and Enology, University of California, Davis, USA
2ITK society, Clapiers, France
3INRAE, UMR759 LEPSE, Montpellier, France

Contact the author

Keywords

stomata, climate change, water-use efficiency, viticulture, physiology

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

A new path for sustainable development. First results in a Venetian “bio-métaéthique company“ (Italy)

This paper will show the results of changes in income in a Veneto winery located in the municipality of Motta di Livenza (Treviso) in the North East of Italy, determined by the application of the “Holistic Universal Sustainability Charter” Metaethic 4.1CC “or” Sustainability Charter BIO-MétaÉthique 4.1CC “of GiESCO (Carbonneau, Cargnello, 2017).

Región Vitivinícola del Vale dos Vinhedos (Brasil): una metodología para la definición de límites geográficos y elaboración de cartas EN escala media

Los estudios regionales presentaron en Geografía, como en otras ciencias, en este siglo, varios enfoques. Cualquiera que sea la mirada sobre el espacio, en la base de la temática regional está la concepción

Adapting wine production to climate change through the exploration of the diversity of Vitis vinifera cultivars

Major factors involved in wine quality and typicity are soil type, climatic conditions, plant material (rootstock and cultivar), vineyard management practices and winemaking conditions.

Genotype-environment interaction of three cultivars of vitis vinifera L. cultivated in two different environments of the Ischia island: effect on production and quality; aspects of the quality of the obtained wines

Pendant une période de trois années le comportement productif et qualitatif de trois cépages tous indigènes de la région de Campania (Italie méridionale) dans deux terroirs de l’île d’Ischia a été étudié; ceci pour obtenir quelques indications préliminaires sur le comportement productif et qualitatif des cépages et sur la qualité des vins.

Estimation of degree brix in grapes by proximal hyperspectral sensing and nanosatellite imagery through the random forest regressor

The assessment of physiological parameters in vineyards can be done by direct measurements or by remote, indirect methods. The latter option frequently yields useful data, and development of methods and techniques that make them possible is worthwhile. One of the parameters most looked for to define the quality status of a vineyard is the degree Brix of its grapes, a quantity usually determined by direct measurement.