terclim by ICS banner
IVES 9 IVES Conference Series 9 Optimizing stomatal traits for future climates

Optimizing stomatal traits for future climates

Abstract

Stomatal traits determine grapevine water use, carbon supply, and water stress, which directly impact yield and berry chemistry. Breeding for stomatal traits has the strong potential to improve grapevine performance under future, drier conditions, but the trait values that breeders should target are unknown. We used a functional-structural plant model developed for grapevine (HydroShoot) to determine how stomatal traits impact canopy gas exchange, water potential, and temperature under historical and future conditions in high-quality and hot-climate California wine regions (Napa and the Central Valley). Historical climate (1990-2010) was collected from weather stations and future climate (2079-99) was projected from 4 representative climate models for California, assuming medium- and high-emissions (RCP 4.5 and 8.5). Five trait parameterizations, representing mean and extreme values for the maximum stomatal conductance (gmax) and leaf water potential threshold for stomatal closure (Ψsc), were defined from meta-analyses. Compared to mean trait values, the water-spending extremes (highest gmax or most negative Ysc) had negligible benefits for carbon gain and canopy cooling, but exacerbated vine water use and stress, for both sites and climate scenarios. These traits increased cumulative transpiration by 8 – 17%, changed cumulative carbon gain by -4 – 3%, and reduced minimum water potentials by 10 – 18%. Conversely, the water-saving extremes (lowest gmax or least negative Ψsc) strongly reduced water use and stress, but potentially compromised the carbon supply for ripening. Under RCP 8.5 conditions, these traits reduced transpiration by 22 – 35% and carbon gain by 9 – 16% and increased minimum water potentials by 20 – 28%, compared to mean values. Overall, selecting for more water-saving stomatal traits could improve water-use efficiency and avoid the detrimental effects of highly negative canopy water potentials on yield and quality, but more work is needed to evaluate whether these benefits outweigh the consequences of minor declines in carbon gain for fruit production.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Megan Bartlett1 and Rami Albasha2,3

1Department of Viticulture and Enology, University of California, Davis, USA
2ITK society, Clapiers, France
3INRAE, UMR759 LEPSE, Montpellier, France

Contact the author

Keywords

stomata, climate change, water-use efficiency, viticulture, physiology

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Biochemical characterization of grape skin cell wall during ripening in relation to Botrytis cinerea susceptibility of two Champagne cultivars

Pectins or pectic polysaccharides are one of the major components in grape skin cell wall, they contribute to physiological processes which determine the integrity and rigidity of grape skin tissue

Cultivo de la Malvasia en Tenerife

El archipiélago Canario, conocido en el pasado como las Islas del Vino, fue una gran potencia en la elaboración y comercialización del vino, sobre todo de caldos elaborados con la variedad Malvasía.

The effects of calcite silicon-mediated particle film application on leaf temperature and grape composition of Merlot (Vitis vinifera L.) vines under different irrigation conditions

This study examined whether the application of calcite-silicon mediated particle film (CaPF) at veraison can mitigate a drought-induced increase in leaf temperature on grapevine, thus contributing to improved leaf functionality, yield and grape composition traits. A total of 48 five-year-old Merlot (Vitis vinifera L.)

Vulnerability of vineyard soils to compaction: the case study of DOC Piave (Veneto region, Italy)

The objective of this work is to study the vulnerability of vineyard soil to compaction.

To what extent does vine balance actually drive fruit composition?

Context and purpose of the study ‐ Vine balance is a concept describing the relationship between carbon assimilation (usually estimated using a measure of vine vigour, e.g. pruning weight) and its utilisation for fruit production (usually estimated using harvest yield). Manipulating vine balance through leaf area or crop load adjustments affects the proportion of the vine’s total carbohydrate production required to mature the fruit. It is commonly considered that composition of the berry, and resulting wine, is strongly affected by vine balance.