terclim by ICS banner
IVES 9 IVES Conference Series 9 De novo Vitis champinii whole genome assembly allows rootstock-specific identification of potential candidate genes for drought and salt tolerance

De novo Vitis champinii whole genome assembly allows rootstock-specific identification of potential candidate genes for drought and salt tolerance

Abstract

Vitis champinii cultivars Ramsey and Dog-ridge are main choices for rootstocks to adapt viticulture in semi-arid and arid regions thanks to their distinctive tolerance to drought and salinity. However, genetic studies on non-vinifera rootstocks have heavily relied on the grapevine (Vitis vinifera) reference genome, which difficulted the assessment of the genetic variation between rootstock species and grapevines. In the present study, this limitation is addressed by introducing a novo phased genome assembly and annotation of Vitis champinii. This new Vitis champinii genome was employed as reference for mapping RNA-seq reads from the same species under drought and salt stressesand for comparison the same reads were also mapped to the Vitis vinifera PN40024.V4 reference genome. A significant increase in alignment rate was gained when mapping Vitis champinii RNA-seq reads to its own genome, compared to the Vitis vinifera PN40024.V4 reference genome, thus revealing the expression levels of genes specific to Vitis champinii. Moreover, differences in coding sequences were observed in ortholog genes between Vitis champinii and Vitis vinifera, which therefore challenges previous differential expression analyses performed between contrasting Vitis genotypes on the same gene from the Vitis vinifera genome. Genes with possible implications in drought and salt tolerance have been identified across the genome of Vitis champinii, and the same genomic data can potentially guide the discovery of candidate genes specific from Vitis champinii for other traits of interest, therefore becoming a valuable resource for rootstock breeding designs, specially towards increased drought and salinity due to climate change.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Andres Zhou-Tsang1,2, Grant R. Cramer5, Cristobal A. Onetto3, Amanda R. Walker4, Anthony R. Borneman3,1 and Matthew Gilliham2,1

1Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide, Glen Osmond SA, Australia
2The Waite Research Institute, and The School of Agriculture, Food and Wine, Faculty of Sciences, The University of Adelaide, Glen Osmond SA, Australia
3The Australian Wine Research Institute, Glen Osmond SA, Australia
4CSIRO Agriculture and Food, Glen Osmond SA, Australia
5Department of Biochemistry and Molecular Biology, University of Nevada, Reno NV, USA

Contact the author

Keywords

Ramsey, Dogridge, rootstock, genome, drought, salt, ortholog, RNAseq

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Microwave-assisted maceration and stems addition in Bonarda grapes: effects on wine chemical composition and sensory properties over two vintages

AIM: Bonarda, the second red grape variety in Argentina, produces high yields per hectare generating, in several cases, wines with low levels of quality compounds.

INSIGHTS ON THE ROLE OF GENES ON AROMA FORMATION OF WINES

Yeast secondary metabolism is a complex network of biochemical pathways and the genetic profile of the yeast carrying out the alcoholic fermentation is obviously important in the formation of the metabolites conferring specific odors to wine. The aim of the present research was to investigate the relative expression of genes involved in flavor compound production in eight different Saccharomyces cerevisiae strains.
Two commercial yeast strains Sc1 (S.cerevisiae x S.bayanus) and Sc2 (S.cerevisiae) and six indigenous S. cerevisiae strains (Sc3, Sc4, Sc5, Sc6, Sc7, Sc8) isolated during spontaneous fermentations were inoculated in Assyrtiko and Vidiano grape must.

Franciacorta DOCG sparkling wine interpretation in relation to wine coming from different areas

Dans la tradition classique, les vins mousseux sont le produit d’assemblage des vins d’origine différent. La choix de la typologie du moussage (brut, extra-brut, dosage zéro, etc.) généralement est une conséquence des résultats organoleptiques atteints à la fin de le période d’affinement en bouteille.

Weather classification over the Western Cape (February, 1996 – 2000) and viticultural implications in the Stellenbosch wine district

Une étude préliminaire des situations météorologiques journalières a été réalisée pour l’Afrique du Sud et pour les mois de février (période de maturation des raisins dans la Province occidentale du Cap), à l’image de la classification synoptique réalisée aux latitudes tempérées en France (Jones & Davis, 2000), afin d’étudier les relations entre le climat et la viticulture à des latitudes plus basses.

Digital PCR: a tool for the early detection of brettanomyces in wine

Brettanomyces bruxellensis is found in various ecological niches, but particularly in fermentative processes: beer, kombucha, cider and wine. In the oenological sector, this yeast is undesirable, as it can produce ethyl phenols, thus altering wine quality. These compounds are characterized by stable or horse-sweat aromas, unpleasant for consumers.