terclim by ICS banner
IVES 9 IVES Conference Series 9 De novo Vitis champinii whole genome assembly allows rootstock-specific identification of potential candidate genes for drought and salt tolerance

De novo Vitis champinii whole genome assembly allows rootstock-specific identification of potential candidate genes for drought and salt tolerance

Abstract

Vitis champinii cultivars Ramsey and Dog-ridge are main choices for rootstocks to adapt viticulture in semi-arid and arid regions thanks to their distinctive tolerance to drought and salinity. However, genetic studies on non-vinifera rootstocks have heavily relied on the grapevine (Vitis vinifera) reference genome, which difficulted the assessment of the genetic variation between rootstock species and grapevines. In the present study, this limitation is addressed by introducing a novo phased genome assembly and annotation of Vitis champinii. This new Vitis champinii genome was employed as reference for mapping RNA-seq reads from the same species under drought and salt stressesand for comparison the same reads were also mapped to the Vitis vinifera PN40024.V4 reference genome. A significant increase in alignment rate was gained when mapping Vitis champinii RNA-seq reads to its own genome, compared to the Vitis vinifera PN40024.V4 reference genome, thus revealing the expression levels of genes specific to Vitis champinii. Moreover, differences in coding sequences were observed in ortholog genes between Vitis champinii and Vitis vinifera, which therefore challenges previous differential expression analyses performed between contrasting Vitis genotypes on the same gene from the Vitis vinifera genome. Genes with possible implications in drought and salt tolerance have been identified across the genome of Vitis champinii, and the same genomic data can potentially guide the discovery of candidate genes specific from Vitis champinii for other traits of interest, therefore becoming a valuable resource for rootstock breeding designs, specially towards increased drought and salinity due to climate change.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Andres Zhou-Tsang1,2, Grant R. Cramer5, Cristobal A. Onetto3, Amanda R. Walker4, Anthony R. Borneman3,1 and Matthew Gilliham2,1

1Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide, Glen Osmond SA, Australia
2The Waite Research Institute, and The School of Agriculture, Food and Wine, Faculty of Sciences, The University of Adelaide, Glen Osmond SA, Australia
3The Australian Wine Research Institute, Glen Osmond SA, Australia
4CSIRO Agriculture and Food, Glen Osmond SA, Australia
5Department of Biochemistry and Molecular Biology, University of Nevada, Reno NV, USA

Contact the author

Keywords

Ramsey, Dogridge, rootstock, genome, drought, salt, ortholog, RNAseq

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Merging fast sensory profiling with non-targeted GC-MS analysis for multifactorial experimental wine making

Wine aroma is influenced by several viticultural and oenological factors. In this study we used experimental wine making in a full factorial design to determine the impact of grapevine age, must turbidity, and yeast strain on the aroma of Vitis vinifera L. cv. Riesling wines. A recently developed, non-targeted SPME-GC-MS fingerprinting approach for wine volatiles was used. This approach includes the segmentation and mathematical transformation of chromatograms in combination with Parallel Factor Analysis (PARAFAC) and subsequent deconvolution of important chromatogram segments.

Grapevine drought tolerant ideotypes to adapt viticulture to climate change

Climate change is challenging the resilience of grapevine, one of the most important crops worldwide. Adapting viticulture to a hotter and drier future will require a multifaceted approach that must include new management strategies, increased irrigation efficiency, and the identification of more drought tolerant genotypes.

Effect of one-year cover crop and arbuscular mycorrhiza inocululation in the microbial soil community of a vineyard

The microbial composition of the soil is an important factor to consider in viticulture, since its influence on the “terroir” and on the organoleptic properties of the wine have been demonstrated. Different agronomic techniques have the potential to modify the composition and functionality of the soil microbial community. Maintaining green covers is known to increase soil microbial diversity. The direct application of inoculum of beneficial microorganisms to the soil has also been used to increase their abundance. However, the environmental conditions of each site seem to have a determining weight in the result of these practices. In this study, we compared the effect on the microbial community of a cover crop with legumes in autumn and the inoculation of grapevines with commercial inoculum bases on Rhizophagus irregularis and Funeliformis mosseae in the previous spring. The study has been carried out in a vineyard in Binissalem, Mallorca, Spain. After applying the treatments, we will analyze the soil microbial communities using the data obtained from Illumina amplification of soil DNA from the 16S and ITS regions to analyze bacteria and fungi community, respectively. In addition, we will record the physicochemical characteristics of the soil at each sampling point. The result showed that agronomic management, in the short term, has less influence than soil characteristics on the composition of the soil microbiome. With these results, we can conclude that in a vineyard, agricultural techniques should focus on improving the characteristics of the soil to improve the biodiversity of the soil microbiota.

Water status modelling: impact of local rainfall variability in Burgundy (France)

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

Ripening characterization and modelling of Listan negro grape in Spain using a regression analysis

The professional winegrower usually selects the harvest date considering several elements, such as the vine stem and berry colour, the flavour, appearance and grain elasticity. Nowadays these elements have turned old fashioned.