terclim by ICS banner
IVES 9 IVES Conference Series 9 De novo Vitis champinii whole genome assembly allows rootstock-specific identification of potential candidate genes for drought and salt tolerance

De novo Vitis champinii whole genome assembly allows rootstock-specific identification of potential candidate genes for drought and salt tolerance

Abstract

Vitis champinii cultivars Ramsey and Dog-ridge are main choices for rootstocks to adapt viticulture in semi-arid and arid regions thanks to their distinctive tolerance to drought and salinity. However, genetic studies on non-vinifera rootstocks have heavily relied on the grapevine (Vitis vinifera) reference genome, which difficulted the assessment of the genetic variation between rootstock species and grapevines. In the present study, this limitation is addressed by introducing a novo phased genome assembly and annotation of Vitis champinii. This new Vitis champinii genome was employed as reference for mapping RNA-seq reads from the same species under drought and salt stressesand for comparison the same reads were also mapped to the Vitis vinifera PN40024.V4 reference genome. A significant increase in alignment rate was gained when mapping Vitis champinii RNA-seq reads to its own genome, compared to the Vitis vinifera PN40024.V4 reference genome, thus revealing the expression levels of genes specific to Vitis champinii. Moreover, differences in coding sequences were observed in ortholog genes between Vitis champinii and Vitis vinifera, which therefore challenges previous differential expression analyses performed between contrasting Vitis genotypes on the same gene from the Vitis vinifera genome. Genes with possible implications in drought and salt tolerance have been identified across the genome of Vitis champinii, and the same genomic data can potentially guide the discovery of candidate genes specific from Vitis champinii for other traits of interest, therefore becoming a valuable resource for rootstock breeding designs, specially towards increased drought and salinity due to climate change.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Andres Zhou-Tsang1,2, Grant R. Cramer5, Cristobal A. Onetto3, Amanda R. Walker4, Anthony R. Borneman3,1 and Matthew Gilliham2,1

1Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide, Glen Osmond SA, Australia
2The Waite Research Institute, and The School of Agriculture, Food and Wine, Faculty of Sciences, The University of Adelaide, Glen Osmond SA, Australia
3The Australian Wine Research Institute, Glen Osmond SA, Australia
4CSIRO Agriculture and Food, Glen Osmond SA, Australia
5Department of Biochemistry and Molecular Biology, University of Nevada, Reno NV, USA

Contact the author

Keywords

Ramsey, Dogridge, rootstock, genome, drought, salt, ortholog, RNAseq

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Grapevine is grown grafted in most of the world largely because of Phylloxera. Rootstocks not only provide tolerance to Phylloxera, but also ensure the supply of water and mineral nutrients to the scion. Rootstocks are an important means of adaptation to environmental conditions if we want to conserve the typical features of the currently used scion genotypes. To aid this adaptation, we can exploit the large diversity of rootstocks used worldwide. To fully explore this existing rootstock diversity, this work benefits from the unique GreffAdapt vineyard, in which four scion genotypes were studied onto 55 commercial rootstocks in three blocks. The aim of this study was to characterise rootstock regulation of scion mineral status and how it relates to scion development.

Les paysages viticoles des régions Vale Dos Vinhedos et Monte Belo (Brésil), un lien avec l’Etrurie

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Study of the vine performance and the wine composition of Tannat on the terroir of Colonia del Sacramento – Uruguay

Grape-growing terroirs were defined according to the method proposed by Falcetti and Asselin (1996) near of Colonia de Sacramento, a city of Uruguay situated on the left of the “Rio de la Plata”.

Adaptation to soil and climate through the choice of plant material

Choosing the rootstock, the scion variety and the training system best suited to the local soil and climate are the key elements for an economically sustainable production of wine. The choice of the rootstock/scion variety best adapted to the characteristics of the soil is essential but, by changing climatic conditions, ongoing climate change disrupts the fine-tuned local equilibrium. Higher temperatures induce shifts in developmental stages, with on the one hand increasing fears of spring frost damages and, on the other hand, ripening during the warmest periods in summer. Expected higher water demand and longer and more frequent drought events are also major concerns. The genetic control of the phenotypes, by genomic information but also by the epigenetic control of gene expression, offers a lot of opportunities for adapting the plant material to the future. For complex traits, genomic selection is also a promising method for predicting phenotypes. However, ecophysiological modelling is necessary to better anticipate the phenotypes in unexplored climatic conditions Genetic approaches applied on parameters of ecophysiological models rather than raw observed data are more than ever the basis for finding, or building, the ideal varieties of the future.

Impact of grape maturity on esters content and sensory characters in wines fermented with yeast strains of different genetic backgrounds

Grapes composition is a factor well known to affect wines composition and sensory expression. The goal of this study was to evaluate how grapes composition modifications linked to maturity level could affect wines aromatic expression and esters composition.