terclim by ICS banner
IVES 9 IVES Conference Series 9 Genotypic variability in root architectural traits and putative implications for water uptake in grafted grapevine

Genotypic variability in root architectural traits and putative implications for water uptake in grafted grapevine

Abstract

Root system architecture (RSA) is important for soil exploration and edaphic resources acquisition by the plant, and thus contributes largely to its productivity and adaptation to environmental stresses, particularly soil water deficit. In grafted grapevine, while the degree of drought tolerance induced by the rootstock has been well documented in the vineyard, information about the underlying physiological processes, particularly at the root level, is scarce, due to the inherent difficulties in observing large root systems in situ. The objectives of this study were to determine genetic differences in the root architectural traits and their relationships to water uptake in two Vitis rootstocks genotypes (RGM, 140Ru) differing in their adaptation to drought. Young rootstocks grafted upon the Riesling variety were transplanted into cylindrical tubes and in 2D rhizotrons under two conditions, well watered and moderate water stress. Root traits were analyzed by digital imaging and the amount of transpired water was measured gravimetrically twice a week. Root phenotyping after 30 days reveal substantial variation in RSA traits between genotypes despite similar total root mass; the drought-tolerant 140Ru showed higher root length density in the deep layer, while the drought-sensitive RGM was characterised by shallow-angled root system development with more basal roots and a larger proportion of fine roots in the upper half of the tube. Water deficit affected canopy size and shoot mass to a greater extent than root development and architectural-related traits for both 140Ru and RGM, suggesting vertical distribution of roots was controlled by genotype rather than plasticity to soil water regime. The deeper root system of 140Ru as compared to RGM correlated with greater daily water uptake and sustained stomata opening under water-limited conditions but had little effect on above-ground growth. Our results highlight that grapevine rootstocks have constitutively distinct RSA phenotypes and that, in the context of climate change, those that develop an extensive root network at depth may provide a desirable advantage to the plant in coping with reduced water resources.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Mathieu Larrey1, Louis Blois1,2, Jean-Pascal Tandonnet1, Clément Saint-Cast1, Marina de Miguel1, Elisa Marguerit1 and Philippe Vivin1

1EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
2Department of Viticulture, Hochschule Geisenheim University, Germany

Contact the author

Keywords

root system architecture, root morphology, water uptake, drought tolerance, rootstock

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

VviSOC1a and VviAG1 act antagonistically in the regulation of flower formation

The SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) is a key floral activator that coordinates external and internal stimuli to ensure timely flowering. During early stages of flower formation, SOC1 represses floral organ identity genes such as AGAMOUS (AG) to prevent premature organ differentiation. In addition to floral organ specification, AG has been shown to regulate fleshy fruit expansion and ripening and, as such, is an important contributor to fruit quality traits. Currently, little is known about the function and gene regulatory network of the grapevine homologs VviSOC1a and VviAG1. As such, the aim of this study was to functionally characterise both genes by overexpressing them in tomato and performing phenotypic and gene expression studies.

Vine-growing zoning of the municipal territories of Ronda and Arriate (Malaga, Spain), « Sierras de Málaga » registered appellation of origin mark

The aim of this communication is the study of the Ronda and Arriate municipal territories environment in order to define and to establish the main physical factors in relation to vine-growing land use. The vine-growing zoning proposed is based on geopedological and climatic features.

Stabilità dei caratteri fenotipici dl alcune cv in diversi pedopaesaggi friulani. Applicazione del metodo nella caratterizzazione viticola del comprensorio DOC “Friuli-Grave”

This communication was estracted from a study concerning the viticultural characterization of A.V.A. “Friuli-Grave” area sponsored by Chamber of Commerce of Pordenone.

Sustaining wine identity through intra-varietal diversification

With contemporary climate change, cultivated Vitis vinifera L. is at risk as climate is a critical component in defining ecologically fitted plant materiel. While winegrowers can draw on the rich diversity among grapevine varieties to limit expected impacts (Morales-Castilla et al., 2020), replacing a signature variety that has created a sense of local distinctiveness may lead to several challenges. In order to sustain wine identity in uncertain climate outcomes, the study of intra-varietal diversity is important to reflect the adaptive and evolutionary potential of current cultivated varieties. The aim of this ongoing study is to understand to what extent can intra-varietal diversity be a climate change adaptation solution. With a focus on early (Sauvignon blanc, Riesling, Grolleau, Pinot noir) to moderate late (Chenin, Petit Verdot, Cabernet franc) ripening varieties, data was collected for flowering and veraison for the various studied accessions (from conservatory plots) and clones. For these phenological growing stages, heat requirements were established using nearby weather stations (adapted from the GFV model, Parker et al., 2013) and model performances were verified. Climate change projections were then integrated to predict the future behaviour of the intra-varietal diversity. Study findings highlight the strong phenotypic diversity of studied varieties and the importance of diversification to enhance climate change resilience. While model performances may require improvements, this study is the first step towards quantifying heat requirements of different clones and how they can provide adaptation solutions for winegrowers to sustain local wine identity in a global changing climate. As genetic diversity is an ongoing process through point mutations and epigenetic adaptations, perspective work is to explore clonal data from a wide variety of geographic locations.

Phenolic profile of fungus-resistant varieties (PIWIs) for red wine production

Context and Purpose of the Study. PIWI grape varieties (Pilzwiderstandsfähig, fungus-resistant) offer innovative solutions for sustainable viticulture by addressing environmental challenges faced by traditional Vitis vinifera.