terclim by ICS banner
IVES 9 IVES Conference Series 9 Genotypic variability in root architectural traits and putative implications for water uptake in grafted grapevine

Genotypic variability in root architectural traits and putative implications for water uptake in grafted grapevine

Abstract

Root system architecture (RSA) is important for soil exploration and edaphic resources acquisition by the plant, and thus contributes largely to its productivity and adaptation to environmental stresses, particularly soil water deficit. In grafted grapevine, while the degree of drought tolerance induced by the rootstock has been well documented in the vineyard, information about the underlying physiological processes, particularly at the root level, is scarce, due to the inherent difficulties in observing large root systems in situ. The objectives of this study were to determine genetic differences in the root architectural traits and their relationships to water uptake in two Vitis rootstocks genotypes (RGM, 140Ru) differing in their adaptation to drought. Young rootstocks grafted upon the Riesling variety were transplanted into cylindrical tubes and in 2D rhizotrons under two conditions, well watered and moderate water stress. Root traits were analyzed by digital imaging and the amount of transpired water was measured gravimetrically twice a week. Root phenotyping after 30 days reveal substantial variation in RSA traits between genotypes despite similar total root mass; the drought-tolerant 140Ru showed higher root length density in the deep layer, while the drought-sensitive RGM was characterised by shallow-angled root system development with more basal roots and a larger proportion of fine roots in the upper half of the tube. Water deficit affected canopy size and shoot mass to a greater extent than root development and architectural-related traits for both 140Ru and RGM, suggesting vertical distribution of roots was controlled by genotype rather than plasticity to soil water regime. The deeper root system of 140Ru as compared to RGM correlated with greater daily water uptake and sustained stomata opening under water-limited conditions but had little effect on above-ground growth. Our results highlight that grapevine rootstocks have constitutively distinct RSA phenotypes and that, in the context of climate change, those that develop an extensive root network at depth may provide a desirable advantage to the plant in coping with reduced water resources.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Mathieu Larrey1, Louis Blois1,2, Jean-Pascal Tandonnet1, Clément Saint-Cast1, Marina de Miguel1, Elisa Marguerit1 and Philippe Vivin1

1EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
2Department of Viticulture, Hochschule Geisenheim University, Germany

Contact the author

Keywords

root system architecture, root morphology, water uptake, drought tolerance, rootstock

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Relation entre les caractéristiques des fromages d’Appellation d’Origine Contrôlée et les facteurs de production du lait

Les fromages d’Appellation d’Origine Contrôlée (AOC) représentent un enjeu économique important pour la filière laitière (11 % des fromages produits en France sont des fromages d’AOC, et dans certaines régions de montagne, cette proportion dépasse 50 %). Les spécificités de ces fromages et leurs liaisons avec les caractéristiques du terroir constituent un système complexe où interagissent en particulier la technologie fromagère et les caractéristiques des laits (composition chimique en particulier). Ces dernières dépendent elles-mêmes des caractéristiques des animaux (origine génétique, facteurs physiologiques, état sanitaire) et de leur mode de conduite (alimentation, hygiène, traite…) (fig. 1). L’influence de ces facteurs de production (alimentation et type d’animal en particulier) sur les caractéristiques des fromages est fréquemment mise en avant par les fromagers, sur la base d’observations empiriques. Il existe cependant très peu de travaux expérimentaux sur le sujet, en raison, entre autres, de la difficulté de séparer correctement les effets propres de ces facteurs d’amont de ceux liés à la technologie fromagère.

Aromatic characterization of Moscato Giallo by GC-MS/MS and stable isotopic ratio analysis of the major volatile compounds

Among the Moscato grapes, Moscato Giallo is a winegrape variety characterized by a high content of free and glycosylated monoterpenoids, which gives very aromatic wines. The aromatic bouquet of Moscato Giallo is strongly influenced by the high concentration of linalool, geraniol, linalool oxides, limonene, α-terpineol, citronellol, HO-trienol, HO-diols, 8-Hydroxylinalool, geranic acid and β-myrcene, that give citrus, rose, and peach notes.

Vegetative propagation during domestication – rooting ability of wild grapevines

The origins of plant propagation trace back to the moment of early humans’ transition from a nomadic existence to settled agricultural societies, cultivating their food.

Perception, liking and emotional response of tropical fruit aromas in Chardonnay wines

Tropical fruit aromas in wines are thought to be important to wine consumers, although there is little research to confirm this statement. With so many wine styles available, it has become important to understand the qualities that are desirable to consumers and how to achieve those qualities. Thiols and esters are compounds that have been found to cause tropical fruit aromas in chardonnay (ref). Fermentation temperature gradients and skin contact were found to increase these compounds using micro scale fermentations. This work aimed to scale up these fermentations/operations to determine if the desired tropical fruit aromas could still be achieved and if there is a perceivable difference in tropical fruit aromas, liking, and emotional response in the wines at the consumer level.

What is the best time to harvest grapes destined for withering? Ripeness and dehydration length affect phenolic composition of Nebbiolo grapes

Sfursat di Valtellina is a DOCG reinforced wine produced in Valtellina from partially withered red grapes of Vitis vinifera L. cv. Nebbiolo. The grape ripeness degree and the dehydration process strongly influence the physicochemical characteristics of grapes [1, 2, 3]. In particular, grape skin and seeds contain several classes of phenolic compounds strictly associated with red wine quality, which are significantly affected by these factors [4]. The aim of this research is to assess the combined influence of different ripeness levels and withering rates on the standard chemical composition and phenolic profile of winegrape in order to provide new insights and approaches to the management of withering, searching for the valorization of grape potentialities.