terclim by ICS banner
IVES 9 IVES Conference Series 9 Towards adaptation to climate change in Rioja: Quality evaluation of wines obtained from Grenache x Tempranillo selections

Towards adaptation to climate change in Rioja: Quality evaluation of wines obtained from Grenache x Tempranillo selections

Abstract

The wine sector is of great relevance and tradition in Mediterranean countries, however, it may be most susceptible to climate change. In recent years, wine production is facing changes worldwide, both at environmental as well as commercial levels, due to global warming and the shift in consumers’ preferences. Wine growers and wine makers are in search of solutions that allow to face these new challenges. One of the most promising initiatives in the long term is the introduction of new plant materials, specifically intraspecific hybridizations between premium varieties that may improve traditional germplasm in its adaptation to climate change. These inter-varietal crosses have the potential to generate quality wines, whilst maintaining the regional typicity, and constitute an attractive alternative for the consumer due to their sensory attributes. In this study, we have evaluated wines from 29 intraspecific Garnacha x Tempranillo hybrids in two different locations, with the aim to assess their oenological potential and sensory attributes. Thirteen of the selections were white and 16 were red. Microvinifications were conducted with two or three replications depending on grape availability. Conventional oenological parameters were determined for all wines. The sensory evaluation and hedonic scores were given by five experts. Red selections obtained higher quality scores than white ones. Among the white selections with higher quality scores, GT-41 Varea and GT-159 Varea outstand, due to their high total acidity and high malic acid content. Regarding red selections, GT-57 Varea and GT-57 UR were perceived as higher in quality, highlighted for their moderate alcoholic and high anthocyanin content. Our results indicate that intraspecific hybridization may be a powerful tool for adapting traditional cultivars to climate change in Rioja.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Alejandro Calvo-López1, María García-Pastor2, M Pilar Sáenz-Navajas2, Mara Hernández2 and Cristina M. Menéndez2

1ICVV, Institute of the Sciences of Vine and Wine, Logroño, Spain 
2Department of Agriculture and Food, University of La Rioja, Logroño, Spain

Contact the author

Keywords

climate change, sensory evaluation, intraspecific hybrids, typicity

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Organic mulches slightly influence wine phenolic composition and sensorial properties

Grapevines have traditionally been grown in semi-arid areas, but viticulture is now compromised by climate change. Therefore, it is necessary to implement environmentally friendly viticulture practices to adapt grapevines to current climatic conditions. In this context, organic mulches offer many benefits, such as reduced soil erosion and increased organic matter, soil water content and crop productivity. However, these practices must not compromise grape and wine quality. Therefore, the objective of this study was to evaluate the effect on wine physicochemical and phenolic composition and sensorial properties of different soil management practices on the vine row. Over four years, five soil treatments were examined in two different vineyards.

Iso-/anisohydric behavior in wine grapes may be a matter of soil moisture

There are claims that wine grape cultivars are either isohydric or anisohydric; the former maintaining, and the latter decreasing, their plant water status as soil moisture declines. However, available information is inconsistent. There are those that show an existence of a continuum in cultivar response to soil moisture rather than a distinct categorization. Others even show both behaviors in the same cultivar grown in different environments. In this study we investigated the behavior of 30 own rooted Vitis vinifera cultivars during successive drydown and rewatering cycles over two growing seasons in arid eastern Washington (<200 mm annual precipitation).

Simgi® platform as a tool for the study of wine active compounds in the  gastrointestinal tract

Simgi® platform pursues the need for dynamic in vitro simulation of the human gastrointestinal tract optimized and adapted to food safety and health fields. The platform has confirmed the model’s suitability since its first’s studies with the consistency between the simulated colonic metabolism of wine polyphenols and the metabolic evolution observed with the intake of wine in human intervention studies [1]. 

Consequences of apical leaf removal on grapevine water status, heat damage, yield and grape ripening on Pinot n and Chardonnay

Climate change presents a significant challenge to grape growing worldwide as increased temperatures lead to wines with increased sugar and pH levels. Manipulation of the exposed leaf area is a powerful lever governing the assimilation and storage of non-structural carbohydrates in grapevines. Reducing the leaf-to-fruit ratio is now considered as a tool for adapting to hotter and dryer grape growing conditions.

Effect of fertigation strategies to adapt PGI Côtes de Gascogne production to hot vintage

The development of fertigation could be a possible solution to adapt PGI Côtes de Gascogne (south-western France) wine production to climate change. The goal would be to limit the negative effects of water stress on yield performance expectation (around 15 tons per hectare) and to make the use of fertilizers more efficient. This study aimed to compare the effects of three strategies of water and minerals supply on grapes and wines qualities. Two fertigation practices were compared to a rainfed control which is the current standard of the local grape growing production. The fertilizers (nitrogen and potassium) were (i) fully brought by irrigation pipe during the season, (ii) partially brought by irrigation pipe and partially on the soil or (iii) fully brought on the soil at the beginning of the season for the non-irrigated control (local standard). The trial was run on cv. Colombard trained on spur pruned with vertical shoot positioning system on a sandy-silty-clay soil over the 2020 vintage which was particularly hot for the region. Moderate to strong water deficit appeared during the growing period of the berries and held on after veraison. Irrigation strategies allowed for maintaining grapevine without water deficit and being significantly different from the control water status. Grapevine with fully or partial fertigation strategies produced 25% more yield mainly due to the increase of the bunch weight. Also, the fully fertigation showed the best ratio between yield and maturity and brought 30% less of fertilizers (both nitrogen and potassium) than the two other strategies. Finally, the analysis of aromatic compounds in Colombard wines, varietal thiols family, showed the same level of concentrations for the 3 treatments, confirming that the yield performance did not impact the aromatic potential in this trial.