terclim by ICS banner
IVES 9 IVES Conference Series 9 The effects of alternative herbicide free cover cropping systems on soil health, vine performance, berry quality and vineyard biodiversity in a climate change scenario in Switzerland

The effects of alternative herbicide free cover cropping systems on soil health, vine performance, berry quality and vineyard biodiversity in a climate change scenario in Switzerland


There is an urgent need in viticulture to adopt alternative herbicide-free soil management strategies to mitigate climate change, increase biodiversity, reduce plant protection products and improve soil quality while minimizing detrimental effects on grapevine’s stress tolerance and fruit quality. To propose sustainable solutions, adapted to different pedoclimatic conditions in Switzerland, we developed a multidisciplinary 4-year project, started in 2020. Objectives of the project are to a) evaluate the impact of green covers (spontaneous flora, winter cover crop and permanent ground cover) on environmental and agronomic parameters and b) develop subsequently innovative strategies for different viticultural contexts of Switzerland. The project is divided into 3 phases: 1) diagnosis, 2) on-farm and 3) on-station experiments. Phase 1) consisted in an assessment of 30 commercial vineyards all over Switzerland, where growers already use different herbicide-free soil management strategies. The most promising practices identified in this exploratory phase will be replicated in commercial vineyards across Switzerland (“on-farm”) as well as in a classical randomized block design in an experimental plot (“on-station”). For phase 1), measurements consisted in evaluation of soil status (compaction, structure, roots development), soil microbial diversity (metagenomics), plant diversity and biomass, vine physiology (water stress, vigor, leaf nitrogen) and berry quality (acidity, sugar, available nitrogen). Interestingly, the permanent ground cover resulted in a higher Shannon index thus a higher biodiversity as compared to the other itineraries. The winter cover crop increased vine nitrogen and vigor while deteriorating soil quality, leaving the soil more exposed and compacted likely due to more frequent tillage. The spontaneous flora led to higher berry sugar accumulation, less nitrogen and higher malic acid concentration putatively due to a higher water retention of the flora in a particularly wet vintage. Phases 2) and 3) are required to confirm those tendencies, over the 3 next vintages  and different climatic conditions.


Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article


Serena Fantasia1, Matteo Mota1, Frédéric Lamy1, David Marchand2, Robin Sonnard2, Vivian Zufferey3, Nicolas Delabays4, Thierry Heger1 and Markus Rienth1

1Changins, Institute of Viticulture and Œnology, University of Applied Sciences and Arts Western Switzerland, Nyon, Switzerland
2FIBL, Research Institute of Organic Agriculture, Lausanne, Switzerland
3Agroscope, Swiss Agricultural Research Institute, Nyon, Switzerland
4hepia, Earth-Nature-Environment Institute, University of Applied Sciences and Arts of Western Switzerland, Jussy, Switzerland

Contact the author


biodiversity, cover crops, soil quality, sustainable viticulture, weed management


IVES Conference Series | Terclim 2022


Related articles…

Impact of aging on dimethyl sulfide (DMS) in Corvina and Corvinone wines

Amarone is an Italian red wine produced in the Valpolicella area, in north-eastern Italy. Due to its elaboration with withered grapes, Amarone is a rather unique example of dry red wine. However, there is very limited data so far concerning the volatile composition of commercial Amarone wines, which also undergo a cask aging of 2-4 years before release. The present work aims at characterizing the aroma composition of Amarone and to elucidate the relationships between chemical composition and sensory characters.

Impact of glutathione-rich inactivated yeast on wine chemical diversity

Glutathione-rich inactivated dry yeasts (GSH-IDY) are claimed to accumulate intracellularly and then release glutathione in the must.

Impact of varying ethanol and carbonation levels on the odor threshold of 1,1,6-trimethyl-1,2-dihydronaphtalene (petrol off-flavor) and role of berry size and Riesling clones

1,1,6-trimethyl-1,2-dihydronaphtelene (TDN) evokes the odor of “petrol” in wine, especially in the variety Riesling. Increasing UV-radiation due to climate change intensifies formation of carotenoids in the berry skins and an increase of TDN-precursors1. Exploring new viticultural and oenological strategies to limit TDN formation in the future requires precise knowledge of TDN thresholds in different matrices. Thresholds reported in the literature vary substantially between 2 µg/L up to 20 µg/L2,3,4 due to the use of different methods. As Riesling grapes are used for very different wine styles such as dry, sweet or sparkling wines, it is essential to study the impact of varying ethanol and carbonation levels.


In a previous work1, it was suggested that the different contents in delphinidin and catechin of the grapes were determinant on the O2 consumption and Strecker aldehyde (SAs) accumulation rates. Higher delphinidin seemed to be related to a faster O2 consumption and a smaller SAs accumulation rate, and the opposite was observed regarding catechin.
In the present paper, these observations were fully corroborated by adding synthetic delphinidin to a wine model containing polyphenolic fractions (PFs) extracted from garnacha and synthetic catechin to a wine model containing PF extracted from tempranillo: The delphinin-containing garnacha model consumed O₂ significantly faster and accumulated significantly smaller amounts of SAs than the original garnacha model, and the catechin-containing tempranillo model, consumed O2 significantly slower and accumulated significantly higher amounts of SAs than the original tempranillo model.


The online monitoring of fermentative aromas provides a better understanding of the effect of temperature on the synthesis and the loss of these molecules. During fermentation, gas and liquid phase concentrations as well as losses and total productions of volatile compounds can be followed with an unprecedented acquisition frequency of about one measurement per hour. Access to instantaneous production rates and total production balances for the various volatile compounds makes it possible to distinguish the impact of temperature on yeast production (biological effect) from the loss of aromatic molecules due to a physical effect³.