terclim by ICS banner
IVES 9 IVES Conference Series 9 A predictive model of spatial Eca variability in the vineyard to support the monitoring of plant status

A predictive model of spatial Eca variability in the vineyard to support the monitoring of plant status

Abstract

In a vineyard, plant water status variability is strongly dependent on soil spatial variability, whose physical characteristics drive the processes involved in the soil water balance. More the soil and its characteristics vary in space (horizontally and vertically), more the productive and qualitative vine performances will be non-homogeneous. In this context, the proximal sensing of apparent soil Electrical Conductivity (ECa) and its monitoring during the growing season can help to understand the nature of spatial variability of vineyard, supporting both viticultural microzoning (identifying Homogeneous and functional Homogeneous Zones, HZs and fHZs) and field experiments. The aims of this contribution are: i) to show how the use of proximal sensing of ECa in the identification of HZs is important, (ii) to show the added value of ECa monitoring during the growing season in order to identify the fHZs, (iii) and to highlight its importance in the evaluation of the experimental field treatments results in vineyard. The study was carried out in two rainfed commercial vineyards located in the southern Italy (Campania Region) cultivated with Greco (white) and Aglianico (red) grapevine variety. Over 2020 and 2021 seasons, detailed soil and atmosphere parameters were recorded, in-vivo plant eco-physiological monitoring has been conducted, and vine status spatial variability monitored by means of UAV multispectral images. Apparent soil electric conductivity (ECa) was measured five times for each vineyard during the growing season 2021 by using the PROFILER EMP 400 electromagnetometer both in vertical and horizontal dipole mode. This instrument allows to simultaneously work with three frequencies (5000, 10000 and 15000 Hz) and explore different depth of sub-soil. The recorded data were processed in MATLAB and compared with other recorded variables within GIS environment. The results have shown how the ECa can be a carries of information to support viticultural microzoning and experimental field data analysis. 

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Carmine Cutaneo1, Eugenia Monaco2, Maurizio Buonanno2 A, Raffaele Castaldo1, Pietro Tizzani1, Ezzy Haitham2, Arturo Erbaggio2, Francesca Petracca3, Veronica De Micco3 and Antonello Bonfante2

1National Research Council of Italy (CNR), Institute for electromagnetic sensing of the environment, IREA, Napoli, Italy 
2National Research Council of Italy (CNR), Institute for Mediterranean Agricultural and Forest Systems, ISAFOM, Portici, Italy 
3Department of Agricultural Sciences, University of Naples Federico II, Portici (Naples), Italy 

Contact the author

Keywords

apparent soil Electrical Conductivity (ECa), viticultural microzoning, soil-plant and atmosphere system, site specific management

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Impact and comprehension of nitrogen and lipid nutrition on the production of fermentative aromas with different S. Cerevisiae yeasts used for spirits

In the Cognac appellation, the production of white wines is almost exclusively dedicated to elaborate Charentaise eaux-de-vie. In this sense, the quality of Cognac eaux-de-vie intrinsically depends on the quality of the base wines subjected to the distillation stage. In this context, the production of these base wines differs from those of classic white wines to release particular organoleptic properties during the distillation stage.

Fungal resident flora of a new winery: colonization, dynamics and potential persistence capacities

Through the years, extensive studies have been conducted on fungal biodiversity during the winemaking process: from the vineyard until aging.

Grapevine rootstock field evaluation under drought and saline condition in California

Climate change impacts grape production worldwide and in California drought and salinity became increasingly challenging for grape growers to maintain sustainable production and fruit quality.

NEW METHOD FOR THE QUANTIFICATION OF CONDENSED TANNINS AND OTHER WINE PHENOLIC COMPOUNDS USING THE AUTOMATED BIOSYSTEMS SPICA ANALIZER

Wine phenolic compounds are important secondary metabolites in enology due to their antioxidant and nutraceutical properties, and their role in the development of color, taste, and protection of wine from oxidation and spoilage. Tannins are valuable phenolic compounds that contribute significantly to these wine properties, especially in mouthfeel characteristics; however, tannin determination remains a significant challenge, with manual and time-consuming methods or complex methodologies. The purpose of this study is to propose a novel method for quantifying condensed tannins in finished wine products.

Biosurfactant from corn-milling industry improves the release of phenolic compounds during red winemaking

AIM: Biosurfactants can be used as emulsifier agents to improve the taste, flavour, and quality of food-products with minimal health hazards [1]. They are surface-active compounds with antioxidant and solubilizing properties [2].