terclim by ICS banner
IVES 9 IVES Conference Series 9 A predictive model of spatial Eca variability in the vineyard to support the monitoring of plant status

A predictive model of spatial Eca variability in the vineyard to support the monitoring of plant status

Abstract

In a vineyard, plant water status variability is strongly dependent on soil spatial variability, whose physical characteristics drive the processes involved in the soil water balance. More the soil and its characteristics vary in space (horizontally and vertically), more the productive and qualitative vine performances will be non-homogeneous. In this context, the proximal sensing of apparent soil Electrical Conductivity (ECa) and its monitoring during the growing season can help to understand the nature of spatial variability of vineyard, supporting both viticultural microzoning (identifying Homogeneous and functional Homogeneous Zones, HZs and fHZs) and field experiments. The aims of this contribution are: i) to show how the use of proximal sensing of ECa in the identification of HZs is important, (ii) to show the added value of ECa monitoring during the growing season in order to identify the fHZs, (iii) and to highlight its importance in the evaluation of the experimental field treatments results in vineyard. The study was carried out in two rainfed commercial vineyards located in the southern Italy (Campania Region) cultivated with Greco (white) and Aglianico (red) grapevine variety. Over 2020 and 2021 seasons, detailed soil and atmosphere parameters were recorded, in-vivo plant eco-physiological monitoring has been conducted, and vine status spatial variability monitored by means of UAV multispectral images. Apparent soil electric conductivity (ECa) was measured five times for each vineyard during the growing season 2021 by using the PROFILER EMP 400 electromagnetometer both in vertical and horizontal dipole mode. This instrument allows to simultaneously work with three frequencies (5000, 10000 and 15000 Hz) and explore different depth of sub-soil. The recorded data were processed in MATLAB and compared with other recorded variables within GIS environment. The results have shown how the ECa can be a carries of information to support viticultural microzoning and experimental field data analysis. 

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Carmine Cutaneo1, Eugenia Monaco2, Maurizio Buonanno2 A, Raffaele Castaldo1, Pietro Tizzani1, Ezzy Haitham2, Arturo Erbaggio2, Francesca Petracca3, Veronica De Micco3 and Antonello Bonfante2

1National Research Council of Italy (CNR), Institute for electromagnetic sensing of the environment, IREA, Napoli, Italy 
2National Research Council of Italy (CNR), Institute for Mediterranean Agricultural and Forest Systems, ISAFOM, Portici, Italy 
3Department of Agricultural Sciences, University of Naples Federico II, Portici (Naples), Italy 

Contact the author

Keywords

apparent soil Electrical Conductivity (ECa), viticultural microzoning, soil-plant and atmosphere system, site specific management

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Chemical and sensory diversity of regional Cabernet-Sauvignon wines

AIM: To investigate chemical and sensory drivers of regional typicity of Cabernet Sauvignon from different geographical regions of Australia.

Generation of radicals in wine by cavitation and study of their interaction with metals, phenols and carboxylic acids

High-power ultrasounds have been related to an accelerated aging of wines, an effect that has been associated to the formation of radical species caused by the cavitation phenomenon [1]. This phenomenon consists of the formation of bubbles in the liquid medium that, when they collapse, cause high-pressure hot spots and temperatures of up to 4800 k [2], notably increasing the reactivity in the medium.

Cover crops sown in the inter-rows shape the weed communities in three vineyards across Italy

The use of cover crops (CCs) is widely proposed as an alternative to traditional soil management in vineyards to exploit a wide range of ecosystem services. The presence of a CC in the inter-row space is known to control spontaneous vegetation in vineyards, primarily through the biomass of the sown crop, which competes with other spontaneous species for soil resources.

Harvest dates, climate, and viticultural region zoning in Greece

Climate is clearly one of the most important factors in the success of all agricultural systems, influencing whether a crop is suitable to a given region, largely controlling crop production and quality, and ultimately driving economic sustainability. Today many assessments of a region’s climate comes from a combination of station and spatial climate data analyses that facilitate the evaluation of the general suitability for viticulture and potential wine styles, allows for comparisons between wine regions, and offers growers a measure of assessing appropriate cultivars and sites.

ENRICHMENT OF THE OENOLOGICAL MALDI-TOF/MS PROTEIN SPECTRA DATABASE FOR RELIABLE OENOLOGICAL YEAST AND BACTERIA IDENTIFICATION

The Matrix Assisted Laser Desorption/Ionization–Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) technology is commonly used in food and medical sector to identify yeast or bacteria species isolated from a nutritive culture media. Since a decade, brewery and oenology industries have been attracted to this method which combines fast analysis times, reliability and low cost of analysis. Briefly, this method is based on the comparison of the MALDI-TOF/MS protein spectra of an isolated colony of yeast or bacteria with those contain in a manufacturer’s reference protein spectra database. Initiated in 2015, the creation of the first oenological mass spectra database has proved to be essential for increase quality of species identification.