terclim by ICS banner
IVES 9 IVES Conference Series 9 A predictive model of spatial Eca variability in the vineyard to support the monitoring of plant status

A predictive model of spatial Eca variability in the vineyard to support the monitoring of plant status

Abstract

In a vineyard, plant water status variability is strongly dependent on soil spatial variability, whose physical characteristics drive the processes involved in the soil water balance. More the soil and its characteristics vary in space (horizontally and vertically), more the productive and qualitative vine performances will be non-homogeneous. In this context, the proximal sensing of apparent soil Electrical Conductivity (ECa) and its monitoring during the growing season can help to understand the nature of spatial variability of vineyard, supporting both viticultural microzoning (identifying Homogeneous and functional Homogeneous Zones, HZs and fHZs) and field experiments. The aims of this contribution are: i) to show how the use of proximal sensing of ECa in the identification of HZs is important, (ii) to show the added value of ECa monitoring during the growing season in order to identify the fHZs, (iii) and to highlight its importance in the evaluation of the experimental field treatments results in vineyard. The study was carried out in two rainfed commercial vineyards located in the southern Italy (Campania Region) cultivated with Greco (white) and Aglianico (red) grapevine variety. Over 2020 and 2021 seasons, detailed soil and atmosphere parameters were recorded, in-vivo plant eco-physiological monitoring has been conducted, and vine status spatial variability monitored by means of UAV multispectral images. Apparent soil electric conductivity (ECa) was measured five times for each vineyard during the growing season 2021 by using the PROFILER EMP 400 electromagnetometer both in vertical and horizontal dipole mode. This instrument allows to simultaneously work with three frequencies (5000, 10000 and 15000 Hz) and explore different depth of sub-soil. The recorded data were processed in MATLAB and compared with other recorded variables within GIS environment. The results have shown how the ECa can be a carries of information to support viticultural microzoning and experimental field data analysis. 

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Carmine Cutaneo1, Eugenia Monaco2, Maurizio Buonanno2 A, Raffaele Castaldo1, Pietro Tizzani1, Ezzy Haitham2, Arturo Erbaggio2, Francesca Petracca3, Veronica De Micco3 and Antonello Bonfante2

1National Research Council of Italy (CNR), Institute for electromagnetic sensing of the environment, IREA, Napoli, Italy 
2National Research Council of Italy (CNR), Institute for Mediterranean Agricultural and Forest Systems, ISAFOM, Portici, Italy 
3Department of Agricultural Sciences, University of Naples Federico II, Portici (Naples), Italy 

Contact the author

Keywords

apparent soil Electrical Conductivity (ECa), viticultural microzoning, soil-plant and atmosphere system, site specific management

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

First company results and for the territory on the application of the “bio-Métaéthique 4.1c” in italy. Cultural, socio-economic, technical and productive aspects

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Natural sparkling wine pétillant naturel: technological features and sensory profile

The article presents the results of a study on the technological features of producing sparkling wines of the Pétillant Naturel (Pet-Nat) type, made using the ancestral method from the Muscat Ottonel and Pinot Noir grape varieties.

Implementation of a deep learning-based approach for detecting and localising automatically grapevine leaves with downy mildew symptoms

Grapevine downy mildew is a disease of foliage caused by Oomycete Plasmopara viticola an endoparasite that develops inside grapevine organs and can infect virtually every green organ. Downy mildew is one of the most destructive diseases in wine-growing regions, drastically reducing yield and fruit quality. Traditional manual disease detection relies on farm experts. Human field scouting has been widely used for monitoring the disease progress, however, is costly, laborious, subjective, and often imprecise.

Veraison as determinant for wine quality and its potential for climate adapted breeding

The evaluation of new grapevine genotypes regarding their potential to produce high quality wines is the time limiting factor in the process of grapevine breeding. Hence, the development of quality-related markers useable in marker-assisted selection (MAS) as well as in prediction models for this bottleneck trait will tremendously enhance breeding efficiency. In extensive studies a training set of a segregating white wine F1 population (150 F1 genotypes = POP150; `Calardis Musqué´ x `Villard Blanc´) was deeply phenotyped and genotyped for model development and QTL analysis.

Utilization of remote sensing technology to detect riesling vineyard variability

ineyard blocks can vary spatially with respect to several viticulturally significant qualities such as soil variables, vine vigor, vine physiology