terclim by ICS banner
IVES 9 IVES Conference Series 9 A predictive model of spatial Eca variability in the vineyard to support the monitoring of plant status

A predictive model of spatial Eca variability in the vineyard to support the monitoring of plant status

Abstract

In a vineyard, plant water status variability is strongly dependent on soil spatial variability, whose physical characteristics drive the processes involved in the soil water balance. More the soil and its characteristics vary in space (horizontally and vertically), more the productive and qualitative vine performances will be non-homogeneous. In this context, the proximal sensing of apparent soil Electrical Conductivity (ECa) and its monitoring during the growing season can help to understand the nature of spatial variability of vineyard, supporting both viticultural microzoning (identifying Homogeneous and functional Homogeneous Zones, HZs and fHZs) and field experiments. The aims of this contribution are: i) to show how the use of proximal sensing of ECa in the identification of HZs is important, (ii) to show the added value of ECa monitoring during the growing season in order to identify the fHZs, (iii) and to highlight its importance in the evaluation of the experimental field treatments results in vineyard. The study was carried out in two rainfed commercial vineyards located in the southern Italy (Campania Region) cultivated with Greco (white) and Aglianico (red) grapevine variety. Over 2020 and 2021 seasons, detailed soil and atmosphere parameters were recorded, in-vivo plant eco-physiological monitoring has been conducted, and vine status spatial variability monitored by means of UAV multispectral images. Apparent soil electric conductivity (ECa) was measured five times for each vineyard during the growing season 2021 by using the PROFILER EMP 400 electromagnetometer both in vertical and horizontal dipole mode. This instrument allows to simultaneously work with three frequencies (5000, 10000 and 15000 Hz) and explore different depth of sub-soil. The recorded data were processed in MATLAB and compared with other recorded variables within GIS environment. The results have shown how the ECa can be a carries of information to support viticultural microzoning and experimental field data analysis. 

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Carmine Cutaneo1, Eugenia Monaco2, Maurizio Buonanno2 A, Raffaele Castaldo1, Pietro Tizzani1, Ezzy Haitham2, Arturo Erbaggio2, Francesca Petracca3, Veronica De Micco3 and Antonello Bonfante2

1National Research Council of Italy (CNR), Institute for electromagnetic sensing of the environment, IREA, Napoli, Italy 
2National Research Council of Italy (CNR), Institute for Mediterranean Agricultural and Forest Systems, ISAFOM, Portici, Italy 
3Department of Agricultural Sciences, University of Naples Federico II, Portici (Naples), Italy 

Contact the author

Keywords

apparent soil Electrical Conductivity (ECa), viticultural microzoning, soil-plant and atmosphere system, site specific management

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Sustainablity of vineyards in the Priorat region (NE Spain)

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Aroma characterization of mold resistant base wines for sparkling wine produced in a warm-temperate area at two different altitudes

In a recent context where consumers pay an increasing attention to sustainability and eco-friendly aspects in the decision-making process, the use of the resistant varieties in the wine sector have returned to the attention. In this context, the use of mould-resistant grape varieties would be an opportunity for sparkling wine producers as it can reduced the pesticide utilization in grape management and hence production costs.
However, the use of the resistant varieties to produce the base wine may be strongly influenced due to its requirements for a particular balance between sugars and acidity to ensure the quality of the final product. In addition, the aromatic profile of base wine plays a crucial role in the perception of the quality of the sparkling wine.

Combined abiotic-biotic plant stresses on the roots of grapevine

In the 19th century, devastating outbreaks of phylloxera (Daktulosphaira vitifoliae Fitch), almost brought European viticulture to its knees. Phylloxera does not only take energy in form of sugars from the vine, but also affects the up- and down- regulations of genes, acts as a carbon sink and reprograms the physiology of the grapevines, including nutrient uptake and the defense system [1]. A key trait of rootstocks is the ability to perform well under high lime conditions as about 30 % of the land surface has calcareous soil. Iron deficiency not only causes the well-known problems of lime-induced chlorosis and stunted growth, but also affects the entire plant metabolism.

Evaluation of viticultural measures to delay ripening of Vitis vinifera ‘Grüner Veltliner’

Context and purpose of the study. `Grüner Veltliner´ is the most important Austrian white quality wine variety, which is mainly used to produce primary fruity wines.

Climatic zoning of viticultural production periods over the year in the tropical zone: application of the methodology of the Géoviticulture MCC system

L’objectif de cette recherche est le zonage climatique des périodes viticoles de l’année dans la Vallée du São Francisco, région brésilienne productrice de vins située en climat tropical semi-aride. Dans cette région, la production peut être échelonnée sur tous les mois de l’année.