terclim by ICS banner
IVES 9 IVES Conference Series 9 A predictive model of spatial Eca variability in the vineyard to support the monitoring of plant status

A predictive model of spatial Eca variability in the vineyard to support the monitoring of plant status

Abstract

In a vineyard, plant water status variability is strongly dependent on soil spatial variability, whose physical characteristics drive the processes involved in the soil water balance. More the soil and its characteristics vary in space (horizontally and vertically), more the productive and qualitative vine performances will be non-homogeneous. In this context, the proximal sensing of apparent soil Electrical Conductivity (ECa) and its monitoring during the growing season can help to understand the nature of spatial variability of vineyard, supporting both viticultural microzoning (identifying Homogeneous and functional Homogeneous Zones, HZs and fHZs) and field experiments. The aims of this contribution are: i) to show how the use of proximal sensing of ECa in the identification of HZs is important, (ii) to show the added value of ECa monitoring during the growing season in order to identify the fHZs, (iii) and to highlight its importance in the evaluation of the experimental field treatments results in vineyard. The study was carried out in two rainfed commercial vineyards located in the southern Italy (Campania Region) cultivated with Greco (white) and Aglianico (red) grapevine variety. Over 2020 and 2021 seasons, detailed soil and atmosphere parameters were recorded, in-vivo plant eco-physiological monitoring has been conducted, and vine status spatial variability monitored by means of UAV multispectral images. Apparent soil electric conductivity (ECa) was measured five times for each vineyard during the growing season 2021 by using the PROFILER EMP 400 electromagnetometer both in vertical and horizontal dipole mode. This instrument allows to simultaneously work with three frequencies (5000, 10000 and 15000 Hz) and explore different depth of sub-soil. The recorded data were processed in MATLAB and compared with other recorded variables within GIS environment. The results have shown how the ECa can be a carries of information to support viticultural microzoning and experimental field data analysis. 

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Carmine Cutaneo1, Eugenia Monaco2, Maurizio Buonanno2 A, Raffaele Castaldo1, Pietro Tizzani1, Ezzy Haitham2, Arturo Erbaggio2, Francesca Petracca3, Veronica De Micco3 and Antonello Bonfante2

1National Research Council of Italy (CNR), Institute for electromagnetic sensing of the environment, IREA, Napoli, Italy 
2National Research Council of Italy (CNR), Institute for Mediterranean Agricultural and Forest Systems, ISAFOM, Portici, Italy 
3Department of Agricultural Sciences, University of Naples Federico II, Portici (Naples), Italy 

Contact the author

Keywords

apparent soil Electrical Conductivity (ECa), viticultural microzoning, soil-plant and atmosphere system, site specific management

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Optimizing the use of bentonite for better control of haze formation In white and rosé wines

In winemaking, the appearance of turbidity in white and wine is a serious visual defect, which lowers significantly its commercial value. A major cause of the formation of turbidity in wine is attributed to the presence of temperature-sensitive proteins.

“Zonation”: interpretation and estimation of “Great zonation” (GZ) following the base methodology of “GRANDE FILIERA” (GF) (Great chain)

Dans des travaux précédents sur le zonage, on a traité de la « Grande Filière », du « terroir », du « territoire », de la «″Terra »″ (« Terre »”), des « Petits zonages ou sub-zonages », du « Grand Zonage », de la qualité (nous en avons classifié plus de quatre-vingt-dix), des « Grands Objectifs » (GO) de l’activité vitivinicole et des moyens utilisés pour les atteindre. Dans le « GRAND ZONAGE » (GZ) nous avons précisé que pour zoner, nous partons des aspects

Untargeted metabolomics analyses to study taste-active compounds released during post-fermentation maceration of wine

The sensory properties of a wine depends on its colours, aromas and flavors. Regarding red wines, the gustatory part consists of the acid, bitter and sweet tastes

Unveiling a hidden link: does time hold the key to altered spectral signatures of grapevines under drought?

Remote sensing technology captures spectral data beyond the visible range, making it useful for monitoring plant stress. Vis-NIR (Visible-Near Infrared) spectroscopy (400-1000 nm) is commonly used to indirectly assess plant status during drought. One example is the widespread use of normalized difference vegetation index (NDVI) that is strongly linked to green biomass. However, a knowledge gap exists regarding the applicability of this method to all the drought conditions and if it is a direct correlation to the water status of the plant.

Climate and the evolving mix of grape varieties in Australia’s wine regions

The purpose of this study is to examine the changing mix of winegrape varieties in Australia so as to address the question: In the light of key climate indicators and predictions of further climate change, how appropriate are the grape varieties currently planted in Australia’s wine regions? To achieve this, regions are classified into zones according to each region’s climate variables, particularly average growing season temperature (GST), leaving aside within-region variations in climates. Five different climatic classifications are reported. Using projections of GSTs for the mid- and late 21st century, the extent to which each region is projected to move from its current zone classification to a warmer one is reported. Also shown is the changing proportion of each of 21 key varieties grown in a GST zone considered to be optimal for premium winegrape production. Together these indicators strengthen earlier suggestions that the mix of varieties may be currently less than ideal in many Australian wine regions, and would become even less so in coming decades if that mix was not altered in the anticipation of climate change. That is, grape varieties in many (especially the warmest) regions will have to keep changing, or wineries will have to seek fruit from higher latitudes or elevations if they wish to retain their current mix of varieties and wine styles.