terclim by ICS banner
IVES 9 IVES Conference Series 9 Copper contamination in vineyard soils of Bordeaux: spatial risk assessment for the replanting of vines and crops

Copper contamination in vineyard soils of Bordeaux: spatial risk assessment for the replanting of vines and crops

Abstract

Copper (Cu) is widely and historically used in viticulture as a fungicide against mildew. Cu has a strong affinity for soil organic matter and accumulates in topsoil horizons. Thus, Cu may negatively affect soil organisms and plants, consequently reducing soil fertility and productivity. The Bordeaux vineyards have the largest vineyard surfaces (26%) within French controlled appellation and a great proportion of French wine production (around 5 million hl per year). Considering the local context of vineyard surfaces decreasing (vine uprooting) and possible new crop plantation, the issue of Cu potential toxicity rises. Therefore, the aims of this work are firstly to evaluate the Cu contamination in vineyard soils of Bordeaux, secondly to produce a risk assessment map for new vine or crop plantation. We used soil analyses from several local studies to build a database with 4496 soil horizon samples. The database was enhanced by means of pedotransfer functions in order to estimate the bioaccessible (EDTA-extractable) Cu in soils of samples without measurements. From this database, 1797 georeferenced samples with CuEDTA concentrations in the topsoil (0-50 cm depth) were used for kriging interpolation in order to produce the spatial distribution map of CuEDTA in vineyard soils. Then, the spatial distribution of Cu was crossed with vine uprooting surfaces and municipality boundaries. CuEDTAconcentrations ranged from 0.52 to 459 mg/kg and showed clear anomalies. Our results from spatial analysis showed that almost 50% of vineyard soil surfaces have CuEDTA concentrations higher than 30 mg/kg (moderate risk for new plantation) and 20% with concentrations higher than 50 mg/kg (high risk for new plantation). A decision-support map based on municipalities was realised to provide a simple tool to stakeholders concerned by land use management.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Lionel Savignan1, Guillaume Bonneau1,2, Stéphanie Jalabert1, Alexandre Lee1 and Philippe Chéry1

1Bordeaux Sciences Agro, EA 4592 Géoressources et Environnement, Gradignan, France
2Fédération Régionale d’Agriculture Biologique de Nouvelle-Aquitaine, Bordeaux, France

Contact the author

Keywords

copper, wine-growing soil, bioaccessibility, ecotoxicity, spatial distribution, risk assessment

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

applicazione dei metodi isotopici e dell’analisi sensoriale negli studi sull’origine dei vini

Traceability of agro-alimentary products is very important to certify their origin. This work aimed to characterize wines obtained by the same cultivar (Nero d’Avola and Fiano) – grown in regions with different soil and climate conditions during three vintages (2003-2005) – employing isotopic analyses (NMR and IRMS) and sensory analyses.

The impact of global warming on Ontario’s icewine industry

Ontario’s wine regions lie at the climatic margins of commercial viticulture owing to their cold winters and short cool growing season. The gradual warming of northern latitudes projected under a human-induced climate change scenario could bring mixed benefits to these wine regions.

Vitamins in musts : an unexplored field

Vitamins are major compounds, involved in several prime yeast metabolic pathways. Yet, their significance in oenology has remained mostly unexplored for several decades and our current knowledge on the matter still remaining obscure to this day. While the vitaminic contents of grape musts have been approached in these ancient investigation

EFFECTS OF LEAF REMOVAL AT DIFFERENT BUNCHES PHENOLOGICAL STAGES ON FREE AND GLYCOCONJUGATE AROMAS OF SKINS AND PULPS OF TWO ITALIAN RED GRAPES

Canopy-management practices are applied in viticulture to improve berries composition and quality, having a great impact on primary and secondary grape metabolism. Among these techniques, cluster zone leaf removal (defoliation) is widely used to manage air circulation, temperature and light radiation of grape bunches and close environment. Since volatiles are quantitatively and qualitatively influenced by the degree of fruit ripeness, the level of solar exposure, and the thermal environment in which grapes ripen, leaf removal has been shown to affect volatile composition of grape berries [1].

Growers’ attitudes towards organic certification: the case of Central Otago, New Zealand

New Zealand viticulture has long been characterised by sustainable grape growing practices as promoted by Sustainable Winegrowing New Zealand (SWNZ) as well as by Organic Viticulture.