terclim by ICS banner
IVES 9 IVES Conference Series 9 Local adaptation tools to ensure the viticultural sustainability in a changing climate

Local adaptation tools to ensure the viticultural sustainability in a changing climate

Abstract

Over the next century, the projected changes in regional climates are expected to have important consequences on wine production. They vary from short-term impacts on wine quality and style, to long-term issues such as varietal suitability and the economic sustainability of wine growing regions. To contextualize the possible temporal and spatial climate change impacts, this study first assessed the past and expected (RCP 4.5 and RCP 8.5) viticultural potential of 24 vineyards sites representative of the middle Loire Valley, namely sites with a weakly, moderately and strongly weathered bedrock having various water holding capacities. Simple terrain tools were then applied to illustrate the likely trends in possible wine quality and style for these 24 sites. While wine quality is shaped by natural features as soil properties, winegrowers’ perennial and annual decision-making inevitably play also an important role. Using a water balance model available for the 24 sites, the effect of different soil management practices on vine performance as well as wine quality and style were evaluated. To validate this applied approach using terrain tools, the final part of the study looked at support precision tools, namely vegetation indices derived from satellite imagery. These indices allow to monitor and estimate the vine water status of the different sites and therefore the delineation of viticultural zones with similar features. As a global changing climate denotes an increase in uncertainty, both in time and over space, these local adaptation tools allow winegrowers to better understand the past and expected viticultural potentialities of their vineyards. These tools should also enhance the resilience of winegrowers as they adopt no-regret strategies that are place specific.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Etienne Neethling1, Cécile Coulon-Leroy1, Etienne Goulet2,3 and Francois Gallet4

1ESA, USC 1422 INRA-GRAPPE, Ecole Supérieure d’Agricultures, Angers, France
2IFV, Institut Français de la Vigne et du Vin, Beaucouzé, France
3InterLoire, Interprofessions des Vins du Val de Loire, Tours, France
4Scanopy, Quincy, France

Contact the author

Keywords

climate change, adaptation tools, middle Loire Valley, conceptual model, wine identity

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Physiological and performance responses of grapevine rootstocks to water deficit and recovery 

Rootstocks play a key role in the grapevine’s adaptation to the increasing soil water scarcity related to climate change. A pot experiment carried out in 2022 aimed at assessing the physiological responses of seven ungrafted rootstocks to a progressive soil water deficit and a subsequent recovery to field capacity.

Efectos del deshojado y de su combinación con el aclareo de Racimos en los componentes básicos de la producción y del Mosto, sobre cv. Tempranillo en la D.O. Ribera del Duero

Las técnicas de manejo del canopy de la vid pueden favorecer la adaptación de los sistemas de conducción a diversas condiciones de cultivo para obtener uva de calidad.

Oligosaccharides from Vitis vinifera grape seeds: a focus on gentianose as a novel bioactive compound

AIM. Grape seeds (Vitis vinifera) are among the main constituents of grape pomace, also exploited in ingredients for nutraceutics and cosmeceutics, particularly regarding the phenolic fraction. The macromolecules of grape/wine include polyphenols, proteins and polysaccharides.

Taking advantage of difficulties. Variable rate application based on canopy maps to achieve a sustainable crop

Aim: The aim of this work was to evaluate the use of Variable Rate Application technologies based on prescription maps in commercial vineyards with large intra-parcel variability to achieve a more sustainable distribution of Plant Protection Products (PPP)

Characterising the chemical typicality of regional Cabernet Sauvignon wines

Aim: To define the uniqueness of Australian Cabernet Sauvignon wines by evaluation of the chemical composition (volatile aroma and non-volatile constituents) that may drive regional typicity, and to correlate this with comprehensive sensory analysis data to identify the most important compounds driving relevant sensory attributes.