terclim by ICS banner
IVES 9 IVES Conference Series 9 Frost risk projections in a changing climate are highly sensitive in time and space to frost modelling approaches

Frost risk projections in a changing climate are highly sensitive in time and space to frost modelling approaches

Abstract

Late spring frost is a major challenge for various winegrowing regions across the world, its occurrence often leading to important yield losses and/or plant failure. Despite a significant increase in minimum temperatures worldwide, the spatial and temporal evolution of spring frost risk under a warmer climate remains largely uncertain. Recent projections of spring frost risk for viticulture in Europe throughout the 21st century show that its evolution strongly depends on the model approach used to simulate budburst. Furthermore, the frost damage modelling methods used in these projections are usually not assessed through comparison to field observations and/or frost damage reports. 
The present study aims at comparing frost risk projections simulated using six spring frost models based on two approaches: a) models considering a fixed damage threshold after the predicted budburst date (e.g BRIN, Smoothed-Utah, Growing Degree Days, Fenovitis) and b) models considering a dynamic frost sensitivity threshold based on the predicted grapevine winter/spring dehardening process (e.g. Ferguson model). The capability of each model to simulate an actual frost event for the Vitis vinifera cv. Chadonnay B was previously assessed by comparing simulated cold thermal stress to reports of events with frost damage in Chablis, the northernmost winegrowing region of Burgundy. Models exhibited scores of κ > 0.65 when reproducing the frost/non-frost damage years and an accuracy ranging from 0.82 to 0.90. 
Spring frost risk projections throughout the 21st century were performed for all winegrowing subregions of Bourgogne-Franche-Comté under two CMIP5 concentration pathways (4.5 and 8.5) using statistically downscaled 8×8 km daily air temperature and humidity of 13 climate models. Contrasting results with region-specific spring frost risk trends were observed. Three out of five models show a decrease in the frequency of frost years across the whole study area while the other two show an increase that is more or less pronounced depending on winegrowing subregion. Our findings indicate that the lack of accuracy in grapevine budburst and dehardening models makes climate projections of spring frost risk highly uncertain for grapevine cultivation regions

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Catinca Gavrilescu1, Sebastien Zito1, Yves Richard1, Thierry Castel1, Guillaume Morvan2 and Benjamin Bois1,3

1Centre de Recherches de Climatologie – UMR Biogeosciences, Université Bourgogne Franche-Comté / CNRS, Dijon, France 
2Chambre d’Agriculture de l’Yonne, Auxerre, France 
3Institut Universitaire de la Vigne et du Vin, Université Bourgogne Franche-Comté, Dijon, France 

Contact the author

Keywords

frost risk, viticulture, thermal stress, climate change, extreme weather

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

ANTI-TRANSPIRANT MODULATION OF GRAPE RIPENING: EFFECTS ON MERLOT VINE DEVELOPMENT AND ROSÉ WINE PHENOLIC AND AROMATIC PROFILES

Climate changes are impacting viticultural regions throughout the world with temperature increases being most prevalent.1 These changes will not only impact the regions capable of growing grapes, but also
the grapes that can be grown.2 As temperatures rise the growing degree days increase and with it the sugar accumulation within the berries and subsequent alcohol levels in wine. Consequently, viticultural
practices need to be examined to decrease the levels of sugars.

Role of VvNCED1 in β-damascenone and abscisic acid biosynthesis: new insights into aroma development in grapes

β-Damascenone is a key norisoprenoid in grape (Vitis vinifera L.) that imparts floral and fruity aromas to both fruits and wines. It is derived from carotenoid metabolism, with neoxanthin as a substrate.

Wines produces without SO2 addition: which impact on their colour? An approach at the global and pigments levels

Since the 18th century, sulfur dioxide (SO2) is used in winemaking. Added at different steps, its antimicrobial but also antioxidasic and antioxidant properties are very helpful for winemakers. Nevertheless sulfur dioxide has a real potential health impact, particularly for sensitive consumers often highlighted by hygienists. Nowadays, a serious trend for “natural” wines (i.e. produced without any additives), as described by their producers, could be observed on the French market what match with a proliferation of wines elaborated without any sulfite addition. 

Flooding responses on grapevine: a physiological, transcriptional and metabolic perspective

Studies on model plants have shown that temporary soil flooding exposes roots to a significant hypoxic stress resulting in metabolic re-programming, accumulation of toxic metabolites and hormonal imbalance. To date, physiological and transcriptional responses to flooding in grapevine are poorly characterized. To fill this gap, we aimed to gain insights into the transcriptional and metabolic changes induced by flooding on grapevine roots (K5BB rootstocks), on which cv Sauvignon blanc (Vitis vinifera L.) plants were grafted.

Process for partial or total dealcoholization of wine using a post-fermentation microbiological technique

The dealcoholized wine sector is experiencing strong market growth, driven by increasing consumer demand.