WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 1 - WAC - Oral presentations 9 Integrative grape to wine metabolite analyses to study the vineyard “memory” of wine

Integrative grape to wine metabolite analyses to study the vineyard “memory” of wine

Abstract

Wine production is a complex multi-step process and the end-product is not easily defined in terms of composition and quality due to the diversity of the raw materials (grapes) and the biological agents (yeast and bacteria) used/present during the fermentation. Furthermore, linking what happens in the vineyard to the wine fermentation and ultimately to characteristics in the wine during ageing is often attempted in scientific studies, but clear causal relationships between factors are not easy to extract. Most wine research is therefore split along viticultural or oenological experimentation. Oenologists/yeast biologists seek direct links between the yeast fermenting a specific juice and the resulting changes in the wines, whereas viticultural studies explore treatments and their effects on grape production and berry quality parameters. If these studies indeed attempt to link back to the vineyards or the wines respectively, invariably one or more of the steps in the wine system is left unexplored, or being handled as a black box. The scientific challenge and opportunity therefore remains to study wine as a system (from vineyard to tank to barrel to bottle to glass). Our approaches in this regard will be explained by using examples from model vineyards under study where grape berries and their reactions to modulated environmental factors were studied using climatic monitoring in combination with molecular and metabolite profiling of the berries during all stages of development. These characterised grapes were then fermented into wines while continuing the detailed metabolite profiling of the juice and wine matrices. The wines were also subjected to sensory evaluations to complete the analysis of the final products. With these studies, we hope to contribute to the analysis of grape and wine active compounds in a holistic manner in order to identify correlations and predict outcomes under a specific set of conditions.

DOI:

Publication date: June 9, 2022

Issue: WAC 2022

Type: Article

Authors

Melane Vivier

Presenting author

Melane Vivier – South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University

Contact the author

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Climat et sol: critères d’évaluation et effets sur le comportement de la vigne

Le zonage viticole aborde en premier lieu la caractérisation des macroclimats aux échelles des grandes régions, pays, continents ou monde (géoviticulture).

Berry maturity effects on physic and chemical characteristics of traditional sparkling wines produced from Chardonnay and Sauvignon blanc grapes.

One of the consequences of global warming is the quick berry development giving rise to a disconnection between sugar accumulation and the formation of important quality minor compounds such as phenolics and volatile compounds being a huge challenge for the oenologist [1]. Thus, this phenomenon is forcing the search on strategies for maintaining the quality of wines despite this situation. One possibility is to make an early harvest with a low sugar concentration (18ºbrix) and advanced harvest for sparkling wine (20-21ºbrix) and afterwards to combine base wines properly and carry out the second fermentation trying to compensate the lack of secondary metabolites due to the quick berry development and higher alcohol degree of the second one, not adequate itself for sparkling wine. The aim of this study was to assess the chemical and physical characteristics, mainly volatile profile, and foaming properties of sparkling wines from grapes of Chardonnay and Sauvignon blanc.

‘TROPICAL’ POLYFUNCTIONAL THIOLS AND THEIR ROLE IN AUSTRALIAN RED WINES

Following anecdotal evidence of unwanted ‘tropical’ character in red wines resulting from vineyard interventions and a subsequent yeast trial observing higher ‘red fruit’ character correlated with higher thiol concentrations, the role of polyfunctional thiols in commercial Australian red wines was investigated.
First, trials into the known tropical thiol modulation technique of foliar applications of sulfur and urea were conducted in parallel on Chardonnay and Shiraz.1 The Chardonnay wines showed expected results with elevated concentrations of 3-sulfanylhexanol (3-SH) and 3-sulfanylhexyl acetate (3-SHA), whereas the Shiraz wines lacked 3-SHA. Furthermore, the Shiraz wines were described as ‘drain’ (known as ‘reductive’ aroma character) during sensory evaluation although they did not contain thiols traditionally associated with ‘reductive’ thiols (H2S, methanethiol etc.).

Monitoring water deficit in vineyards by means of Red and Infrared measurements

Vineyard water availability is one of the most important variables both in plant’s production and wine quality, once it regulates several processes, among which the stomata activity. To avoid water deficit, wine producers introduced artificial irrigation in their vineyard, using a semi-empirical process to calculate water amount.

Unveiling the unknow aroma potential of Port wine fortification spirit taking advantage of the comprehensive two-dimensional gas chromatography

Port wine is a fortified wine exclusively produced in the Douro Appellation (Portugal) under very specific conditions resulting from natural and human factors. Its intrinsic aroma characteristics are modulated upon a network of factors, such as the terroir, varieties and winemaking procedures that include a wide set of steps, namely the fortification with grape spirit (ca. 77% v/v ethanol).