WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 1 - WAC - Oral presentations 9 Integrative grape to wine metabolite analyses to study the vineyard “memory” of wine

Integrative grape to wine metabolite analyses to study the vineyard “memory” of wine

Abstract

Wine production is a complex multi-step process and the end-product is not easily defined in terms of composition and quality due to the diversity of the raw materials (grapes) and the biological agents (yeast and bacteria) used/present during the fermentation. Furthermore, linking what happens in the vineyard to the wine fermentation and ultimately to characteristics in the wine during ageing is often attempted in scientific studies, but clear causal relationships between factors are not easy to extract. Most wine research is therefore split along viticultural or oenological experimentation. Oenologists/yeast biologists seek direct links between the yeast fermenting a specific juice and the resulting changes in the wines, whereas viticultural studies explore treatments and their effects on grape production and berry quality parameters. If these studies indeed attempt to link back to the vineyards or the wines respectively, invariably one or more of the steps in the wine system is left unexplored, or being handled as a black box. The scientific challenge and opportunity therefore remains to study wine as a system (from vineyard to tank to barrel to bottle to glass). Our approaches in this regard will be explained by using examples from model vineyards under study where grape berries and their reactions to modulated environmental factors were studied using climatic monitoring in combination with molecular and metabolite profiling of the berries during all stages of development. These characterised grapes were then fermented into wines while continuing the detailed metabolite profiling of the juice and wine matrices. The wines were also subjected to sensory evaluations to complete the analysis of the final products. With these studies, we hope to contribute to the analysis of grape and wine active compounds in a holistic manner in order to identify correlations and predict outcomes under a specific set of conditions.

DOI:

Publication date: June 9, 2022

Issue: WAC 2022

Type: Article

Authors

Melane Vivier

Presenting author

Melane Vivier – South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University

Contact the author

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Anthocyanin content and composition of Merlot grapes under temperature and late pruning conditions 

One of the main aspects of Climate Change is the increase of temperatures during summer and grape maturity period. Physiological processes are influenced by these high temperatures and result in grapes with higher sugar concentration, less acidity and less anthocyanin content among other quality changes. One strategy to deal with the climate change effects is the implementation of late winter pruning to alter the effect of high temperatures during key periods by delays in maturity time.

NMR profiling of grape musts from some italian regions

With wine fraud, being a widespread problem [1], the need for more sophisticated and precise analytical methods of its detection remains ever persistent.

LCA: an effective, generalizable method for wine ecodesign? Advantages and limitations

Life cycle assessment (LCA) is an effective and comprehensive method for evaluating the environmental impact of a product, considering its entire life cycle. In the context of wine production, although the use of lca is gaining ground in viticulture, its application is still limited to the fine assessment of winemaking processes.

Hydraulic redistribution and water movement mechanisms in grapevines

Plants have been shown to redistribute water between root sections and soil layers along a gradient of decreasing water availability. One benefit of this hydraulic redistribution is that water can be transported from roots in wet soil to others in dry soil, delaying the onset of water stress and increasing root longevity in dry environments. Grapevines are thought to redistribute water laterally across the trunk from wet to dry portions of the root system. However, it is unknown whether the phloem contributes to such water redistribution.

Climate and the evolving mix of grape varieties in Australia’s wine regions

The purpose of this study is to examine the changing mix of winegrape varieties in Australia so as to address the question: In the light of key climate indicators and predictions of further climate change, how appropriate are the grape varieties currently planted in Australia’s wine regions? To achieve this, regions are classified into zones according to each region’s climate variables, particularly average growing season temperature (GST), leaving aside within-region variations in climates. Five different climatic classifications are reported. Using projections of GSTs for the mid- and late 21st century, the extent to which each region is projected to move from its current zone classification to a warmer one is reported. Also shown is the changing proportion of each of 21 key varieties grown in a GST zone considered to be optimal for premium winegrape production. Together these indicators strengthen earlier suggestions that the mix of varieties may be currently less than ideal in many Australian wine regions, and would become even less so in coming decades if that mix was not altered in the anticipation of climate change. That is, grape varieties in many (especially the warmest) regions will have to keep changing, or wineries will have to seek fruit from higher latitudes or elevations if they wish to retain their current mix of varieties and wine styles.