WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 1 - WAC - Oral presentations 9 Ultrastructural and chemical analysis of berry skin from two Champagne grapes varieties and in relation to Botrytis cinerea susceptibility

Ultrastructural and chemical analysis of berry skin from two Champagne grapes varieties and in relation to Botrytis cinerea susceptibility

Abstract

Botrytis cinerea is a necrotrophic pathogen that causes one of the most serious diseases of the grapevine (Vitis vinifera), grey mold or Botrytis bunch rot. In Champagne, the Botrytis cinerea disease leads to considerable economic losses for winemakers and wines exhibit organoleptic defaults. The grapevine susceptibility increases with berry ripening, due to a loss of elasticity of the skin and an increase in its permeability. These processes may be related to the morphology of the grape berry skin and its chemical composition, in particular the amount and type of tannins, which provide a protective barrier against the fungus by inhibiting fungal enzymes that gives resistance against the pathogen.

This work investigated the ultrastructure of the grape skin and the amount and type of tannins throughout the berry development of the two main Champagne cultivars: Vitis vinifera cv. Pinot noir and Chardonnay in relation to in vitro susceptibility tests to Botrytis cinerea.

The comparative study between the two main grape cultivars of the Champagne region shows differences in the ultrastructure and composition of tannins, Chardonnay skins are characterized by an organized ultrastructure and elasticity of the cell wall related to a lower sensitivity to Botrytis cinerea. The type of tannins observed in Pinot noir skins is thicker and may contribute to cell wall rigidity and greater sensitivity to Botrytis cinerea.

DOI:

Publication date: June 9, 2022

Issue: WAC 2022

Type: Article

Authors

Marie André, Soizic Lacampagne, Audrey Barsacq, Etienne Gontier, Laurence Mercier, Laurence Gény-Denis, Diane Courot

Presenting author

Marie André – Unité mixte de recherche Œnologie, UMR 1366 Université de Bordeaux, INRAE, Bordeaux INP, ISVV, 33882, Villenave d’Ornon, France

Unité mixte de recherche Œnologie, UMR 1366 Université de Bordeaux, INRAE, Bordeaux INP, ISVV, 33882, Villenave d’Ornon, France | Bordeaux Imaging Center, Université de Bordeaux, UMS 3420, CNRS, INSERM, US 4, 33000 Bordeaux, France | MHCS, Epernay, France

Contact the author

Keywords

skin – ripening – tannins – ultrastructure – Champagne

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

PHENOTYPIC DIVERSITY AND BIO-PROTECTION CAPABILITY OF METSCHNIKOWIA SP. IN OENOLOGY

Nowadays, the trend is to reduce the use of chemical inputs in the food sector, including in oenology. One of the inputs widely used in the wine making process are sulfites, for its several properties: antimicrobial and antioxidiant. This use isn’t without consequences on consumer’s health and environment, it can lead for example to allergic reactions and pollution. To limit the addition of chemical inputs, microbial alternatives are used. It consists to inoculate in grape must, a micro-organism able to inhibit the growth of the negative indigenous flora during the phase before the fermentation and to guarantee the sensory qualities of wines.

Mobilizing endogenous transposable elements for grapevine improvement: a genomic and epigenomic approach in New Zealand Sauvignon Blanc

Efforts to improve the New Zealand wine industry’s climate resilience and sustainability through grapevine improvement are limited by germplasm availability and a reliance on Sauvignon Blanc exports. To address this, we are working to generate a population of 12,000 individuals with unique genetic traits, from which to select future clones for major export varieties.

Sauvignon Blanc plantlets are being regenerated from embryogenic callus, using an approach designed to mobilise endogenous transposable elements as mutagens.

How much does the soil, climate and viticultural practices contribute to the variability of the terroir expression?

When considering the application of a systemic approach to assess the intrinsic complexity of agricultural production, the following question immediately arises

Sensory analysis in oenology: the role of methodological differences in expert panel evaluations

Sensory analysis is an essential component of oenology, offering valuable insights into wine quality that influence decision-making in viticulture and winemaking.

VineAI: artificial intelligence for fungal disease

Early and accurate grapevine disease detection and surveillance are crucial for optimizing vineyard management practices.