WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 1 - WAC - Oral presentations 9 Ultrastructural and chemical analysis of berry skin from two Champagne grapes varieties and in relation to Botrytis cinerea susceptibility

Ultrastructural and chemical analysis of berry skin from two Champagne grapes varieties and in relation to Botrytis cinerea susceptibility

Abstract

Botrytis cinerea is a necrotrophic pathogen that causes one of the most serious diseases of the grapevine (Vitis vinifera), grey mold or Botrytis bunch rot. In Champagne, the Botrytis cinerea disease leads to considerable economic losses for winemakers and wines exhibit organoleptic defaults. The grapevine susceptibility increases with berry ripening, due to a loss of elasticity of the skin and an increase in its permeability. These processes may be related to the morphology of the grape berry skin and its chemical composition, in particular the amount and type of tannins, which provide a protective barrier against the fungus by inhibiting fungal enzymes that gives resistance against the pathogen.

This work investigated the ultrastructure of the grape skin and the amount and type of tannins throughout the berry development of the two main Champagne cultivars: Vitis vinifera cv. Pinot noir and Chardonnay in relation to in vitro susceptibility tests to Botrytis cinerea.

The comparative study between the two main grape cultivars of the Champagne region shows differences in the ultrastructure and composition of tannins, Chardonnay skins are characterized by an organized ultrastructure and elasticity of the cell wall related to a lower sensitivity to Botrytis cinerea. The type of tannins observed in Pinot noir skins is thicker and may contribute to cell wall rigidity and greater sensitivity to Botrytis cinerea.

DOI:

Publication date: June 9, 2022

Issue: WAC 2022

Type: Article

Authors

Marie André, Soizic Lacampagne, Audrey Barsacq, Etienne Gontier, Laurence Mercier, Laurence Gény-Denis, Diane Courot

Presenting author

Marie André – Unité mixte de recherche Œnologie, UMR 1366 Université de Bordeaux, INRAE, Bordeaux INP, ISVV, 33882, Villenave d’Ornon, France

Unité mixte de recherche Œnologie, UMR 1366 Université de Bordeaux, INRAE, Bordeaux INP, ISVV, 33882, Villenave d’Ornon, France | Bordeaux Imaging Center, Université de Bordeaux, UMS 3420, CNRS, INSERM, US 4, 33000 Bordeaux, France | MHCS, Epernay, France

Contact the author

Keywords

skin – ripening – tannins – ultrastructure – Champagne

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Wine by-products valorisation by green chemistry methods: Impact of the extraction process on the structure, functionalities and activity of the extracted molecules

Wine by-products valorisation by green chemistry methods: Impact of the extraction process on the structure, functionalities and activity of the extracted molecules

Grapevine genotypes with potential for reducing the carbon footprint in the atmosphere and cultivation in a biological system

The concentration of CO2 in the atmosphere is increasing from year to year. Taking into account the calculations of the greenhouse gas inventory, it was found that approximately 70% of CO2 in the atmosphere is absorbed by vegetation (forests, agricultural land, etc.).

Characterizing the effects of nitrogen on grapevines with different scion/rootstock combinations: agronomic, metabolomic and transcriptomic approaches

Most vineyards are grafted and include a variety (Vitis vinifera) grafted over a wild Vitis rootstock (hybrids of V. berlandieri, riparia and rupestris). Grape berry quality at harvest depends on a subtle balance between acidity and the concentrations of sugars, polyphenols and precursors of aroma compounds. The mechanisms controlling the balance of sugars/acids/polyphenols are influenced by the abiotic environment, in particular nitrogen supply, and interact with the genotypes of both the scion variety and the rootstock. Previous work suggests that some of the effects of water stress are in fact linked to a nitrogen deficiency driven indirectly by the reduction of water absorption.

UV-VIS-NIR spectroscopy as a tool for predicting volatile compounds in grape must

The wine sector is one of the most significant industries worldwide, with Spain being a leading country in wine production and export. A key factor in wine quality is its aroma, which is directly influenced by the volatile compounds present in the grape, with terpenes being among the most significant contributors.

IMPACT OF CLIMATIC CONDITIONS ON THE SEASONING QUALITY OF OAK WOOD FOR OENOLOGICAL USE (QUERCUS PETRAEA)

For coopers, seasoning and toasting are considered crucial steps in barrel making during which the oak wood develops specific organoleptic properties. Seasoning, carried out in the open air, allows reducing the moisture content of the staves to between 14 and 18% (compared to 70 to 90% after splitting) while modulating the intrinsic composition of the oak wood. Toasting consists of applying different degrees of heat to a barrel for a specific period of time. As the temperature increases, oak wood produces a wide range of chemical compounds through thermal degradation of its intrinsic composition.