WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 1 - WAC - Oral presentations 9 Spectral features of vine leaves are influenced by their mineral content

Spectral features of vine leaves are influenced by their mineral content

Abstract

The reflectance spectra of vegetation carry potentially useful information that can be used to determine chemical composition and discriminate between vegetation classes. If compared with analytical methods such as conventional chemical analysis, reflectance measurement provides non-destructive, economic, near real-time data.  Presently, results from reflectance measurements performed by spectroradiometry on leaves and branches of Vitis vinifera L. cv. Merlot and Cabernet Sauvignon from two vineyards in south Brazil are reported. The vineyards had different geological histories but were subjected to the same management. The objectives were to detect spectral differences between the vineyards, and to correlate these differences to variations in foliar traits like the chemical composition of vine leaves. To that end, seven vine parcels were selected for reflectance measurements and chemical analyses (of eleven elements) of vine leaves, and correlations between reflectance and chemical composition were looked for. An initial investigation by discriminant analysis applied to reflectance data of leaves and branches and to grape varieties as well allowed for good separation between vineyards and varieties (> 90% accuracy). By further investigating the correlations between leaf chemical composition and reflectance along the wavelength domain covered by the measurements, we found several well-determined wavelengths with Pearson correlation coefficients r > 0.7. Abundances of elements could be modelled up to 94% accuracy. These preliminary results, which have to be validated, suggest that variations in soil properties induce chemical differences in vine leaves that can be detected by reflectance measurements. Applications of this observation include the assessment of the chemical content of vine leaves by spectroradiometry as a fast, low-cost alternative to chemical analytical methods.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Jorge Ducati, Adriane Thum

Presenting author

Jorge Ducati – Remote Sensing Center, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

Universidade do Vale do Rio dos Sinos, São Leopoldo, Brazil 

Contact the author

Keywords

vineyard geology – chemical abundances – spectroradiometry – multivariate analysis

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Influence of two yeast strains and different nitrogen nutrition on the aromatic compounds in Lugana wine

Lugana Protected Designation of Origin (PDO) wines are made from Turbiana grapes. The aroma of Lugana wines results from the combined contribution of esters, terpenes, norisprenoids, sulfur compounds and the benzenoid methyl salicylate. This study aims to investigate how volatile aroma compounds are affected by different nitrogen supplies and yeast strains.

Fermentative volatile compounds and chromatic characteristics can contribute to Italian white wines diversity

Perceived aroma plays an important role in wine quality, and it depends mainly on the volatile composition. Volatile organic compounds (VOCs) from grapes and those formed during winemaking are involved in the sensory complexity of wines. In aroma-neutral winegrape varieties, the winemaking process itself, and particularly alcoholic fermentation (AF), impacts strongly on the organoleptic characteristics of wines due to the formation of volatile alcohols, acids, and esters. In addition, phenolic compounds could contribute not only to the wine color but also to VOCs evolution during AF.

Application of UV-B radiation in pre- and postharvest as an innovative and sustainable cultural practice to improve grape phenolic composition

Ultraviolet radiation (UVR) is a minor part of the solar spectrum, but it represents an important ecological factor that influences many biological processes related to plant growth and development. In recent years, the application of UVR in agriculture and food production is emerging as a clean and environmentally friendly technology.
In grapevine, many studies have been conducted on the effects of ambient levels of UVR, but there are few considering the effects of UV-B application on grape phenolic composition under commercial growing or postharvest conditions.

Enhancing Monastrell wine quality in a climate change scenario: the role of cation exchange resins in addressing acidity challenges

Climate change significantly impacts vine and grape physiology, leading to changes in wine composition, including reduced titratable acidity, elevated ethanol content, and higher pH levels [1].

Grapevine genotypes with potential for reducing the carbon footprint in the atmosphere and cultivation in a biological system

The concentration of CO2 in the atmosphere is increasing from year to year. Taking into account the calculations of the greenhouse gas inventory, it was found that approximately 70% of CO2 in the atmosphere is absorbed by vegetation (forests, agricultural land, etc.).