WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 2 - WAC - Oral presentations 9 Multisensory experiential wine marketing

Multisensory experiential wine marketing

Abstract

Interest in the pairing, or matching, of wine with music goes way back, with commentators initially using musical metaphors merely to describe the wines that they were writing about. More recently, however, this has transformed into a growing range of multisensory tasting events in which wine and music are deliberately paired to assess, or increasingly to illustrate, the impact of the latter on people’s experience of the former. Initial isolated small-scale and often anecdotal reports of music changing the taste of wine have since evolved into numerous large-scale experiential, and often experimental, events. The results of the latter (at least those that make it into print) typically demonstrate the robustness, not to say ubiquity, of such crossmodal effects. It is no exaggeration, therefore, to suggest that the explosive growth of such events is revolutionizing wine marketing. In this talk, I want to take a closer look at this emerging field of research, considering how the insights from such events are increasingly starting to influence experiential wine marketing, not to mention in-home consumption, often via sensory apps. In order to stay relevant to today’s and, perhaps more importantly, tomorrow’s, wine consumers, the wine marketers will need to ride the experiential multisensory wave that is currently sweeping through the drinks industry.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Charles Spence

Presenting author

Charles Spence – Crossmodal Research Laboratory, Oxford University, UK

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

REVEALING THE ORIGIN OF BORDEAUX WINES WITH RAW 1D-CHROMATOGRAMS

Understanding the composition of wine and how it is influenced by climate or wine-making practices is a challenging issue. Two approaches are typically used to explore this issue. The first approach uses chemical
fingerprints, which require advanced tools such as high-resolution mass spectrometry and multidimensional chromatography. The second approach is the targeted method, which relies on the widely available 1-D GC/MS, but involves integrating the areas under a few peaks which ends up using only a small fraction of the chromatogram.

Shading grapevines with dynamic agrivoltaics address the challenge of early ripening and wine quality related with climate change

Context and purpose of the study. Climate change accelerates grapevine’s phenology, advancing harvests by 2–3 weeks over the past 40 years negatively affecting wine style due to a lack of acidity and too much alcohol.

Soil, foliar, and juice nitrogen application: influence on fruit and wine for Chardonel grown in Virginia

Nitrogen (N) is applied in the vineyard or the winery in wine production systems. The influence of different routes of N application is not well understood.

Use of fumaric acid on must or during alcoholic fermentation

Fumaric acid has been approved by the OIV in 2021 for its application on wine to control the growth and activity of lactic acid bacteria. Fumaric acid is currently being evaluated by the OIV as an acidifier of must and wine. Investigations during the 2023 vintage provided further information on its use on must or during AF, thus completing information provided during the previous vintage.

Monitoring vineyard canopy structure by aerial and ground-based RGB and multispectral imagery analysis

Unmanned Aerial Vehicles (UAVs) are increasingly used to monitor canopy structure and vineyard performance. Compared with traditional remote sensing platforms (e.g. aircraft and satellite), UAVs offer a higher operational flexibility and can acquire ultra-high resolution images in formats such as true color red, green and blue (RGB) and multispectral. Using photogrammetry, 3D vineyard models and normalized difference vegetation index (NDVI) maps can be created from UAV images and used to study the structure and health of grapevine canopies. However, there is a lack of comparison between UAV-based images and ground-based measurements, such as leaf area index (LAI) and canopy porosity.