WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 2 - WAC - Oral presentations 9 Multisensory experiential wine marketing

Multisensory experiential wine marketing

Abstract

Interest in the pairing, or matching, of wine with music goes way back, with commentators initially using musical metaphors merely to describe the wines that they were writing about. More recently, however, this has transformed into a growing range of multisensory tasting events in which wine and music are deliberately paired to assess, or increasingly to illustrate, the impact of the latter on people’s experience of the former. Initial isolated small-scale and often anecdotal reports of music changing the taste of wine have since evolved into numerous large-scale experiential, and often experimental, events. The results of the latter (at least those that make it into print) typically demonstrate the robustness, not to say ubiquity, of such crossmodal effects. It is no exaggeration, therefore, to suggest that the explosive growth of such events is revolutionizing wine marketing. In this talk, I want to take a closer look at this emerging field of research, considering how the insights from such events are increasingly starting to influence experiential wine marketing, not to mention in-home consumption, often via sensory apps. In order to stay relevant to today’s and, perhaps more importantly, tomorrow’s, wine consumers, the wine marketers will need to ride the experiential multisensory wave that is currently sweeping through the drinks industry.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Charles Spence

Presenting author

Charles Spence – Crossmodal Research Laboratory, Oxford University, UK

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

CONVOLUTIONAL NEURAL NETWORK TO PREDICT GENETIC GROUP AND SULFUR TOLERANCE OF BRETTANOMYCES BRUXELLENSIS

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Targeted and untargeted 1H-NMR analysis for sparkling wine’s authenticity

Studies on wineomics (wine’s metabolome) have increased considerably over the last two decades. Wine results from many environmental, human and biological factors leading to a specific metabolome for each terroir. NMR metabolomics is a particularly effective tool for studying the metabolome since it allows the rapid and simultaneous detection of major compounds from several chemical families.1 Quantitative NMR has already proven its effectiveness in monitoring the authenticity of still wines.

Historical terraced vineyards – heritage and nature conservation strategies

Historical terrace vineyards are simultaneously impressive documents of the human inclination to design, sites for the production of high quality wines and habitats for a rich variety of flora and fauna

The colour pattern of flower arrangements influence wine tasters’ sensory description

The arrangements of flowers and wine counterparts are inextricably linked. Whether a fundamental aspect of tablescaping or acolytes to broader entertainment rituals, they have an entangled history since ancient times. The aim of this contribution is to verify the influence of visually delicate and robust flower arrangements on individual description of wines. Changes in the sensory description of wines were investigated during subjects’ (thirty-two participants) exposure to three different conditions: the presence of delicate, robust, or totally absent flower arrangements.

Removal of Fumonisin B1 and B2 from red wine using polymeric substances

The Ability of PVPP (Polyvinylpolypyrrolidone), PVP-DEGMA-TAIC (copolimerization of N-vinyl-2-pyrrolidinone with ethylene glycol dimethacrylate and triallyl isocyanurate) and PAEGDMA
(poly(acrylamide-co-ethylene glycol dimethacrylate)) polymers was tested as removal agents for Fumonisin B1 (FB1) and Fumonisin B2 (FB2) from model solutions and red wine. The polymers removal capacity was checked at three different resident times (2, 8 and 24 hours of contact time between the polymer and the sample), showing no differences in the percentage of FB1 and FB2 removal. Then, different polymer concentrations (1, 5 and 10 mg mL-1) were tested in model solution with and without phenolics (i.e. gallic acid and 4-methylcatechol).