WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 2 - WAC - Oral presentations 9 The importance of the physicochemical composition of wine on the score awarded in an official contest

The importance of the physicochemical composition of wine on the score awarded in an official contest

Abstract

The quality of wine is difficult to define. This is most certainly accredited to everyone´s different perception of quality. Some of the indicators of high-quality wines are color complexity and balance. Color is one of the most crucial attributes of quality, not only for the obvious implications for their perception but also because they are indicators of other aspects related to its aroma and taste. In addition to color, wine aroma is another important attribute linked with quality and consumer preferences. Most of the compounds responsible for wine aroma are volatile molecules and can be classified into chemical families, such as alcohols, esters, nitrogen compounds, terpenes, phenols, etc. The most common way to classify wines according to their quality is by means of sensory analysis. But, is there any relation between the physicochemical composition of the wines and the scores given by the experts? The objective of this work was to study the relationship between chromatic and aromatic profiles and the sensory scores awarded in a wine contest for sixty-seven Monastrell wines (young wines without wood contact, young wines with wood contact and wines with long wood aging). Physicochemical, chromatic and aromatic-active compounds were measured by spectrophotometric and SPME‐GC/MS determinations and were correlated with the sensory scores. The statistical analysis of the results showed a significant correlation between some of the parameters determined and the score obtained, highlighting the positive and significant correlation between the total score awarded by judges and the parameters of color intensity and total polyphenol index of the wines. The higher scores were associated with the higher phenolic and tannin content, wines with long oak aging obtained the best correlation for both parameters (TPI and total tannin). No significant correlation was observed between the overall score of the wines and any of the families of aroma compounds studied. However, we could find a significant positive correlation between the aromatic composition of the wines and their price. As a conclusion our results showed that certain sensory characteristics appeared to be more important when judging the overall quality of the wine, the better relationships being found in the wines with long oak aging.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Alejandro Martínez-Moreno, Martínez-Pérez P, Bautista-Ortin

Presenting author

Alejandro Martínez-Moreno – Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain

 A.B., Gomez-Plaza, E | Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain 

Contact the author

Keywords

Monastrell, chromatic composition, Wine contest, sensory analysis

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Chemical composition of cool-climate Sauvignon blanc grape skins clones during ripening

Sauvignon blanc is the most important variety in cool valleys in central Chile accounting 15,522 ha which corresponds to 42.4% of the cultivated surface with white varieties in Chile

Second pruning as a strategy to delay maturation in cv. ‘Touriga nacional’ in the Portuguese Douro region

The advance in maturation of wine grapes is an important climate change risk related effect that could affect warm regions like Portuguese Douro Wine Region. Indeed, the climate analysis over the past years registered a decrease in the precipitation, significant higher average temperatures, and a more frequent occurrence of extreme weather events, including heat waves. In these conditions the length from anthesis until maturation is shortened and the uncoupling of technical and phenolic maturity results in berries with higher sugar concentration (and lower acidity), but lower anthocyanins, tannins, and total phenolic concentration, which produce unbalanced wines.
In this work, an innovative strategy of crop forcing, based on forcing vine regrowth after a second pruning of green shoots, was tested, aimed at delaying ripening until the temperature becomes lower and, therefore, preventing acidity loss and increasing anthocyanin-to-sugar ratio. The experiments were conducted in 2019 and 2020 in a commercial vineyard of ‘Touriga Nacional’ located in the Douro Region. Crop forcing was conducted 15 (CF1) to 30 (CF2) days after fruit set. Vines pruned with conventional methods were used as control (CF0). Results confirmed that fruit ripening was shifted from the hot season (August/September), until a cooler period (October through early-November). At harvest, grapevine berries from CF1 and CF2 presented lower pH and higher acidity, than control, with no significant differences in colour intensity and phenolic levels composition. Sugar content was lower in CF2-treated vines in both seasons. However, in CF-treated vines the number and size of clusters were significantly lower (up to 88% reduction) than in control plants. A metabolomics analysis of mature berries from CF-treated vines and control is underway. Crop forcing was indeed effective in producing a more balance berry composition but severely reduced grapevine yield,

Time vs drought: leaf age rather than drought drives osmotic adjustment in V. vinifera cv. Pinot Noir

Global warming and increased frequency and/or severity of drought events are among the most threatening consequences of climate change for agricultural crops. In response to drought, grapevine (as many other plants) exhibits osmotic adjustment through active accumulation of osmolytes which in turn shift the leaf turgor loss point (TLP) to more negative values, allowing to maintain stomata opened at lower water potentials1. We investigated the capacity of Pinot noir leaves to modulate their osmotic potential as a function of: (i) time (seasonal osmoregulation), (ii) growing temperatures, and (iii) drought events, to enhance comprehension of the resilience of grapevines in drought conditions. We performed trails under semi-controlled field conditions, and in two different greenhouse chambers (20/15 °C vs 25/20 °C day/night). For two consecutive vegetative seasons, grafted potted grapevines (Pinot noir/SO4) were subjected to two different water regimes for at least 30 days: well-watered (WW) and water deficit (WD).

Bud fruitfulness in Vitis vinifera L. cv. Chardonnay in cool climate regions in South Africa

Bud fruitfulness is a key determinant of the potential and the actual yield. The formation of the grapevine yield spans over a period of two consecutive growing seasons (Ferrara & Mazzeo, 2023).

Evaluation of colloidal stability in white and rosé wines investing Dynamic Light Scattering technology

Proteins constitute one of the three main components of grape juice and white wine, phenolic compounds and polysaccharides being the others. A specific group of the total grape-derived proteins resists degradation or adsorption during the winemaking process and remains in finished wine if not removed by the commonplace commercial practice of bentonite fining. While bentonite is effective in removing the problematic proteins, it is claimed to adversely affect the quality of the treated wine under certain conditions, through the removal of colour, flavor and texture compounds. A number of studies have indicated that different protein fractions require distinct bentonite concentrations for protein removal and consequent heat stabilization.