WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 2 - WAC - Oral presentations 9 An infrared laser sensor to characterize the gaseous headspace of champagne glasses under static and swirling conditions

An infrared laser sensor to characterize the gaseous headspace of champagne glasses under static and swirling conditions

Abstract

Right after the pouring of champagne in a glass, thousands of rising and bursting bubbles convey gas-phase CO2 and volatile organic compounds in the headspace above the champagne surface, thus progressively modifying the gaseous chemical space perceived by the consumer [1]. Gas-phase CO2 and ethanol vapors are the main species released in the glass headspace and thus inhaled by champagne tasters. Their accurate quantification is therefore crucial to better understand the strong interplay between the various parameters at play during champagne tasting and to avoid or decrease the very unpleasant carbonic bite [2,3].

A diode laser infrared spectrometer aimed at quantifying gas-phase CO2 in the headspace of static champagne glasses was developed in our group in the past few years [4,5]. This spectrometer has been further improved recently with the addition of a multipath system dedicated to the mapping of CO2 in the whole glass headspace [6,7]. After a strong increase in the concentration of gas-phase CO2 during the pouring step, a rapid vertical stratification is observed in the headspace of a static glass (with decreasing CO2 concentrations while moving away from the liquid surface and as time proceeds). Even more recently, an inter-band cascade laser (ICL) was also added to the spectrometer to quantify the concentration of gas-phase ethanol in a champagne glass headspace.

Moreover, before smelling a wine, it is worth noting that enologists, sommeliers, and most of tasters are commonly used to swirl their glass with the aim of increasing flavor release [8]. A video processing program was developed to decipher the manual rotation travel done by a statistical sample of more than 50 people swirling various glasses filled with various water levels. Based on the statistical data, a homemade orbital shaking device was designed to replicate a standardized and repeatable human swirling motion. Depending on both the radius of gyration and the angular velocity of rotating glasses, the concentration of gas-phase CO2 found in the headspace of various glasses was followed with time through diode laser spectrometry.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Florian, Lecasse, Raphaël Vallon, Anne-Laure Moriaux,Frédéric Polak, Bertrand Parvitte, Virginie Zeninari, Clara Cilindre, Gérard Liger-Belair

Presenting author

Florian, Lecasse  – GSMA, Spectroscopie Laser et Application, Equipe Effervescence, Université de Reims Champagne-Ardenne

GSMA, Spectroscopie Laser et Application, Equipe Effervescence, Université de Reims Champagne-Ardenne

Contact the author

Keywords

Champagne, Wine Swirling, Carbon Dioxide, Bubbles, Tunable Diode Laser Absorption Spectroscopy

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

The challenge of viticultural landscapes

Le monde vitivinicole est de plus en plus concerné par la question paysagère : l’enjeu est de taille puisqu’il s’agit de la survie de l’image positive dont bénéficient les Appellations d’Origine Contrôlée. Les paysages sont composés d’éléments qui renvoient à des références socioculturelles fortes, susceptibles de modeler l’image d’un produit et d’en déterminer à notoriété et le prix. Dans un monde médiatisé comme le nôtre, le visuel construit l’arrière-plan des représentations mentales associées à toute marchandise ; et pour les aliments, produits de la terre, ce visuel est forcément paysager.

Sustainable viticulture’ the “semi‐minimal” pruned “hedge” system for grape vines long term experience on cv. Sangiovese (Vitis vinifera L.)

In previous experiments carried out in Bologna on Sangiovese grapevines raised with the Australian “Minimal Pruning” system, it has been shown that this system left an excessive burden of buds on the vine.

IDENTIFYING POTENTIAL CHEMICAL MARKERS RESPONSIBLE FOR THE PERMISSIVENESS OF BORDEAUX RED WINES AGAINST BRETTANOMYCES BRUXELLENSIS USING UNTARGETED METABOLOMICS

All along the red winemaking process, many microorganisms develop in wine, some being beneficial and essential, others being feared spoilers. One of the most feared microbial enemy of wine all around the world is Brettanomyces bruxellensis. Indeed, in red wines, this yeast produces volatile phenols, molecules associated with a flavor described as “horse sweat”, “burnt plastic” or “leather”. To produce significant and detectable concentrations of these undesired molecules, the yeasts should first grow and become numerous enough. Even if the genetic group of the strain present and the cellar temperature may modulate the yeast growth rate¹ and thus the risk of spoilage, the main factor seems to be the wines themselves, some being much more permissive to B. bruxellensis development than others.

Flavanol glycosides in grapes and wines : the key missing molecular intermediates in condensed tannin biosynthesis ?

Polyphenols are present in a wide variety of plants and foods such as tea, cacao and grape1. An important sub-class of these compounds is the flavanols present in grapes and wines as monomers (e.g (+)-catechin or (-)-epicatechin), or polymers also called condensed tannins or proanthocyanidins. They have important antioxidant properties2 but their biosynthesis remains partly unknown. Some recent studies have focused on the role of glycosylated intermediates that are involved in the transport of the monomers and may serve as precursors in the polymerization mechanism3, 4. The global objective of this work is to identify flavanol glycosides in grapes or wines, describe their structure and determine their abundance during grape development and in wine.

Influence of canopy management on yield, grape and wine quality. Relationship between the potassium content and pH in must and wine of the cultivar “Tempranillo”

In recent years red wines are being produced in Andalusia from indigenous and foreign grape varieties, one of which is the Spanish variety Tempranillo.