WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 2 - WAC - Oral presentations 9 An infrared laser sensor to characterize the gaseous headspace of champagne glasses under static and swirling conditions

An infrared laser sensor to characterize the gaseous headspace of champagne glasses under static and swirling conditions

Abstract

Right after the pouring of champagne in a glass, thousands of rising and bursting bubbles convey gas-phase CO2 and volatile organic compounds in the headspace above the champagne surface, thus progressively modifying the gaseous chemical space perceived by the consumer [1]. Gas-phase CO2 and ethanol vapors are the main species released in the glass headspace and thus inhaled by champagne tasters. Their accurate quantification is therefore crucial to better understand the strong interplay between the various parameters at play during champagne tasting and to avoid or decrease the very unpleasant carbonic bite [2,3].

A diode laser infrared spectrometer aimed at quantifying gas-phase CO2 in the headspace of static champagne glasses was developed in our group in the past few years [4,5]. This spectrometer has been further improved recently with the addition of a multipath system dedicated to the mapping of CO2 in the whole glass headspace [6,7]. After a strong increase in the concentration of gas-phase CO2 during the pouring step, a rapid vertical stratification is observed in the headspace of a static glass (with decreasing CO2 concentrations while moving away from the liquid surface and as time proceeds). Even more recently, an inter-band cascade laser (ICL) was also added to the spectrometer to quantify the concentration of gas-phase ethanol in a champagne glass headspace.

Moreover, before smelling a wine, it is worth noting that enologists, sommeliers, and most of tasters are commonly used to swirl their glass with the aim of increasing flavor release [8]. A video processing program was developed to decipher the manual rotation travel done by a statistical sample of more than 50 people swirling various glasses filled with various water levels. Based on the statistical data, a homemade orbital shaking device was designed to replicate a standardized and repeatable human swirling motion. Depending on both the radius of gyration and the angular velocity of rotating glasses, the concentration of gas-phase CO2 found in the headspace of various glasses was followed with time through diode laser spectrometry.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Florian, Lecasse, Raphaël Vallon, Anne-Laure Moriaux,Frédéric Polak, Bertrand Parvitte, Virginie Zeninari, Clara Cilindre, Gérard Liger-Belair

Presenting author

Florian, Lecasse  – GSMA, Spectroscopie Laser et Application, Equipe Effervescence, Université de Reims Champagne-Ardenne

GSMA, Spectroscopie Laser et Application, Equipe Effervescence, Université de Reims Champagne-Ardenne

Contact the author

Keywords

Champagne, Wine Swirling, Carbon Dioxide, Bubbles, Tunable Diode Laser Absorption Spectroscopy

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

The effectiveness of proximal remote sensors in plant water status evaluation of grapevine

Extensive studies have been conducted on grapevine responses to water deficit, but these responses are difficult to generalise since numerous factors can influence the response(s), including genotype, developmental stage, soil, climate, and season.

Potential deacidifying role of a commercial chitosan: impact on pH, titratable acidity, and organic acids in model solutions and white wine

Chitin is the main structural component of a large number of organisms (i.e., mollusks, insects, crustaceans, fungi, algae), and marine invertebrates including crabs and shrimps.

The economic impact of drones on viticultural processes

Nowadays there are many challenges facing both winegrowers and workers, in other agricultural practices, related to the growing demand for food products, the safety and quality of these products, and the preservation of the environment…

Effects of different antioxidant strategies on the phenolic evolution during the course of a white winemaking process

This work aimed to evaluate the evolution of phenolic compounds during white winemaking process up to bottling and 12 months storage, together with the influence of different antioxidant strategies

Etude des effets millésime, situation et sol à partir d’un observatoire du Gamay en beaujolais

Des expérimentations sur Gamay ont été réalisées en Beaujolais de 2000 à 2006 sur 10 parcelles d’AOC différentes. De nombreuses mesures ont été effectuées à différents stades (vigne, baies récoltées, vinification et bouteille avec ou sans vieillissement). Ces mesures sont également de natures différentes (données phénologiques, analytiques, dégustation). Des analyses de la composition des sols sont également disponibles.