WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 2 - WAC - Oral presentations 9 An infrared laser sensor to characterize the gaseous headspace of champagne glasses under static and swirling conditions

An infrared laser sensor to characterize the gaseous headspace of champagne glasses under static and swirling conditions

Abstract

Right after the pouring of champagne in a glass, thousands of rising and bursting bubbles convey gas-phase CO2 and volatile organic compounds in the headspace above the champagne surface, thus progressively modifying the gaseous chemical space perceived by the consumer [1]. Gas-phase CO2 and ethanol vapors are the main species released in the glass headspace and thus inhaled by champagne tasters. Their accurate quantification is therefore crucial to better understand the strong interplay between the various parameters at play during champagne tasting and to avoid or decrease the very unpleasant carbonic bite [2,3].

A diode laser infrared spectrometer aimed at quantifying gas-phase CO2 in the headspace of static champagne glasses was developed in our group in the past few years [4,5]. This spectrometer has been further improved recently with the addition of a multipath system dedicated to the mapping of CO2 in the whole glass headspace [6,7]. After a strong increase in the concentration of gas-phase CO2 during the pouring step, a rapid vertical stratification is observed in the headspace of a static glass (with decreasing CO2 concentrations while moving away from the liquid surface and as time proceeds). Even more recently, an inter-band cascade laser (ICL) was also added to the spectrometer to quantify the concentration of gas-phase ethanol in a champagne glass headspace.

Moreover, before smelling a wine, it is worth noting that enologists, sommeliers, and most of tasters are commonly used to swirl their glass with the aim of increasing flavor release [8]. A video processing program was developed to decipher the manual rotation travel done by a statistical sample of more than 50 people swirling various glasses filled with various water levels. Based on the statistical data, a homemade orbital shaking device was designed to replicate a standardized and repeatable human swirling motion. Depending on both the radius of gyration and the angular velocity of rotating glasses, the concentration of gas-phase CO2 found in the headspace of various glasses was followed with time through diode laser spectrometry.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Florian, Lecasse, Raphaël Vallon, Anne-Laure Moriaux,Frédéric Polak, Bertrand Parvitte, Virginie Zeninari, Clara Cilindre, Gérard Liger-Belair

Presenting author

Florian, Lecasse  – GSMA, Spectroscopie Laser et Application, Equipe Effervescence, Université de Reims Champagne-Ardenne

GSMA, Spectroscopie Laser et Application, Equipe Effervescence, Université de Reims Champagne-Ardenne

Contact the author

Keywords

Champagne, Wine Swirling, Carbon Dioxide, Bubbles, Tunable Diode Laser Absorption Spectroscopy

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Geological, mineralogical and geochemical influences on the cultivation of vines

Aims: The aims of this study are to determine the influences of the local geology, mineralogy and geochemistry of surroundings, substrate and soil on the cultivation of vines, these as an additional factor of specificity and locality in the production of wine and definition of terroir, as well as for the discrimination of local variance of substrate and soil properties for the strategic management of cultivation plots and/or the evaluation of new cultivation regions, necessary within a scope of global climate change.

Quantification of the production of hydrogen peroxide H2O2 during wine oxidation

Chemical studies aiming at assessing how a wine reacts towards oxidation usually focus on the characterization of wine constituents, such as polyphenols, or oxidation products. As an alternative, the key oxidation intermediate hydrogen peroxide H2O2 has never been quantified, although it plays a pivotal role in wine oxidation. H2O2 is obtained from molecular oxygen as the result of a first cascade of oxidation reactions involving metal ions and polyphenols. The produced H2O2 then reacts in a second cascade of oxidation to produce reactive hydroxyl radicals that can attack almost any chemical substrate in wine.

The soil application of a plant-derived protein hydrolysate speeds up selectively the ripening-specific processes in table grape

Grapevine is one of the most extensively cultivated fruit crops, playing a crucial role in the economies of many grape-growing regions around the world.

Application of plant growth regulators on Vitis vinifera L var. Mouchtaro affect berry quality characteristics & associated microbial communities

The phenolic profile of the red grapevine varieties berries is a key quality factor and several techniques have been applied to improve it (Perez-Lamela et al., 2007; Singh SK and Sharma, 2010). The last decade the application of resistance elicitors and phytohormones is an innovative viticultural technique (Paladines-Quezada et al., 2021; Alenazi et al., 2019).In the present study, leaves and berries of a Greek red indigenous variety (Mouhtaro) sprayed with two elicitors, benzothiadiazole and chitosan and a plant hormone abscisic acid, during veraison.

Les justifications “terroirs” en terme de marketing: les conditions sont réunies pour une rencontre de qualité entre le consommateur moderne et le vin

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...