WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 2 - WAC - Oral presentations 9 An infrared laser sensor to characterize the gaseous headspace of champagne glasses under static and swirling conditions

An infrared laser sensor to characterize the gaseous headspace of champagne glasses under static and swirling conditions

Abstract

Right after the pouring of champagne in a glass, thousands of rising and bursting bubbles convey gas-phase CO2 and volatile organic compounds in the headspace above the champagne surface, thus progressively modifying the gaseous chemical space perceived by the consumer [1]. Gas-phase CO2 and ethanol vapors are the main species released in the glass headspace and thus inhaled by champagne tasters. Their accurate quantification is therefore crucial to better understand the strong interplay between the various parameters at play during champagne tasting and to avoid or decrease the very unpleasant carbonic bite [2,3].

A diode laser infrared spectrometer aimed at quantifying gas-phase CO2 in the headspace of static champagne glasses was developed in our group in the past few years [4,5]. This spectrometer has been further improved recently with the addition of a multipath system dedicated to the mapping of CO2 in the whole glass headspace [6,7]. After a strong increase in the concentration of gas-phase CO2 during the pouring step, a rapid vertical stratification is observed in the headspace of a static glass (with decreasing CO2 concentrations while moving away from the liquid surface and as time proceeds). Even more recently, an inter-band cascade laser (ICL) was also added to the spectrometer to quantify the concentration of gas-phase ethanol in a champagne glass headspace.

Moreover, before smelling a wine, it is worth noting that enologists, sommeliers, and most of tasters are commonly used to swirl their glass with the aim of increasing flavor release [8]. A video processing program was developed to decipher the manual rotation travel done by a statistical sample of more than 50 people swirling various glasses filled with various water levels. Based on the statistical data, a homemade orbital shaking device was designed to replicate a standardized and repeatable human swirling motion. Depending on both the radius of gyration and the angular velocity of rotating glasses, the concentration of gas-phase CO2 found in the headspace of various glasses was followed with time through diode laser spectrometry.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Florian, Lecasse, Raphaël Vallon, Anne-Laure Moriaux,Frédéric Polak, Bertrand Parvitte, Virginie Zeninari, Clara Cilindre, Gérard Liger-Belair

Presenting author

Florian, Lecasse  – GSMA, Spectroscopie Laser et Application, Equipe Effervescence, Université de Reims Champagne-Ardenne

GSMA, Spectroscopie Laser et Application, Equipe Effervescence, Université de Reims Champagne-Ardenne

Contact the author

Keywords

Champagne, Wine Swirling, Carbon Dioxide, Bubbles, Tunable Diode Laser Absorption Spectroscopy

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Caractéristiques physiques et agronomiques des principaux terroirs viticoles de l’Anjou (France). Conséquences pour la viticulture

Une étude conduite dans le cœur du vignoble A.O.C. angevin, sur une surface d’environ 30.000 ha, a permis de caractériser et cartographier finement (levé au 1/12.500)

Studio preliminare sulla microzonazione Bioclimatica condotto in un’area viticola collinare

La caratterizzazione bioclimatica del territorio rappresenta un elemento sempre più impor­tante per il miglioramento dell’ attività agricola. La conoscenza degli andamenti assunti dai parametri meteorologici puà consentire di individuare le peculiarità dei singoli appezzamenti aziendali, ottimizzando le scelte sia in termini tattici (esecuzione dei più opportuni interventi colturali) che strategici (scelta delle specie o varietà più idonee a valorizzare ciascun am­biente).

Wine chemical markers assess nitrogen levels in original grape juice

Nitrogen (N) nutrition of the vineyard plays a crucial role in the composition of must and wine, impacting fermentation, as well as the aroma and taste of the final product. N-deficient grape juice can result in increased astringency and bitterness, and a decrease in pleasant aromas in the wine.

Impact of sample size on yield estimation in commercial vineyards

The accurate estimation of yield is a fundamental for suitable viticulture, playing a pivotal role in the planning of logistics, the allocation of resources and the formulation of commercial strategies.

Identification of γ-nonalactone precusor in Merlot and Cabernet-Sauvignon grapes

Wine flavor results on complexes interactions of odorous components, which come from different aromatic families like esters, thiols, aldehydes, pyrazines or lactones.