WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Brettanomyces bruxellensis, born to live

Brettanomyces bruxellensis, born to live

Abstract

The wine spoilage yeast Brettanomyces bruxellensis can be found at several steps in the winemaking process due to its resistance to multiple stress conditions. Among the resistance strategies, one could be the formation of biofilm, a lifestyle known to enhance persistence of microorganisms. In this study, we propose to characterize biofilm of B. bruxellensis in wine, especially through several microscopic analyses.

The capacity of the yeast to colonize supports was demonstrated, notably in wine. When biofilms developed on stainless steel chips were inoculated in wine, a considerable cell release from chip into wine was induced, followed by a growth of planktonic cells able to produce wine spoilage metabolites, such as 4-ethylphenol.

Besides the ability to form biofilm, B. bruxellensis is also able to display different cell morphologies, as demonstrated by microscopic observations. First, filaments were observed, playing a role in the structure of biofilm. For the first time, chlamydospore-like was described in this species, probably a potential additional resistance strategy. In addition, a polymorphism of vegetative cells was revealed. Using image analysis, we have shown that strains having different genotyping presented different morphology. Based on this link, a deep learning method was adapted to predict the genetic group of a strain from a simple microscopic observation.

Taken together, all of these features and strategies lead B. bruxellensis to persist in environment and to contaminate wine. Moreover, morphology of vegetative cells could be newly considered as indicator of a strain resistance capacity since the sensitivity to SO2 depend on the strain genetic group.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Manon LEBLEUX, Emmanuel Denimal, Hany ABDO, Christian COELHO, Louise Basmaciyan, Hervé Alexandre, Stéphanie Weidmann, Sandrine ROUSSEAUX

Presenting author

Manon LEBLEUX – Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102 Dijon-France. Laboratoire VAlMiS-IUVV

Agrosup Dijon, Direction Scientifique, Appui A La Recherche, 26 Boulevard Docteur Petitjean, Dijon, F-21000, France, Laboratoire Valmis-IUVV | Université Bourgogne Franche-Comté, Agrosup Dijon, PAM UMR A 02.102 Dijon-France. Laboratoire PCAV | Université Bourgogne Franche-Comté, Agrosup Dijon, PAM UMR A 02.102 Dijon-France. Laboratoire Valmis-IUVV

Contact the author

Keywords

Brettanomyces bruxellensis – wine spoilage – biofilm – morphology – deep learning

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Evaluating Smoke Contaminants in Wine Using 13C-Labelled Barley as a Fuel Source

Wildfires are becoming more common in many areas of the world that are also associated with wine grape production, especially the Pacific northwest United States, Australia and even some areas of France.

The use of zirconia dioxide enclosed in a metallic cage for the stabilisation of Chardonnay white wine

White wines are commonly stabilised by removing the heat unstable proteins through adsorption by bentonite, an effective but inefficient wine processing step. Alternative absorbents are thus sought and zirconium dioxide (zirconia) is recognised as a promising candidate.

Etude des effets millésime, situation et sol à partir d’un observatoire du Gamay en beaujolais

Des expérimentations sur Gamay ont été réalisées en Beaujolais de 2000 à 2006 sur 10 parcelles d’AOC différentes. De nombreuses mesures ont été effectuées à différents stades (vigne, baies récoltées, vinification et bouteille avec ou sans vieillissement). Ces mesures sont également de natures différentes (données phénologiques, analytiques, dégustation). Des analyses de la composition des sols sont également disponibles.

ViniGWAS – improving the selection of climate-resilient grapevine varieties

Climate change and its consequences are becoming an increasing challenge for viticulture. The breeding of new grapevine varieties that are better adapted to the changing conditions offers a possible solution.

δ13C : A still underused indicator in precision viticulture  

The first demonstration of the interest of carbon isotope composition of sugars in grapevine, as an integrated indicator of vineyard water status, dates back to 2000 (Gaudillère et al., 1999; Van Leeuwen et al., 2001). Thanks to the isotopic discrimination of Carbon that takes place during plant photosynthesis, under hydric stress conditions, it is possible to accurately estimate the photosynthetic activity. Ever since, δ13C has been widely applied with success to zonation, terroir studies and vine physiology research, but is still not widely used by viticulturists. This is quite astonishing by considering the impact of global warming on viticulture and the need to improve water management, that would justify a widespread use of δ13C.
The lack of private laboratories proposing the analysis, the cost of the technology, as well as the long analytical delays, have been detrimental to its development. Some laboratories tried to overcome the analytical difficulties of isotopic analysis by using fourier transformed infrared spectroscopy, as a fast and cheap alternative to the official OIV method (IRMS). These claimed FTIR models have never been published or peer reviewed and cannot be considered robust. In this work, thanks to the recent acquisition of IRMS technology, new modern and robust applications of δ13C for viticulture are proposed. This includes the use of the analysis to make parcel separations at harvesting, the possibility to increase the precision of hydric stress cartography and the potential cost reduction when compared with Scholander pressure bomb analysis.