WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Brettanomyces bruxellensis, born to live

Brettanomyces bruxellensis, born to live

Abstract

The wine spoilage yeast Brettanomyces bruxellensis can be found at several steps in the winemaking process due to its resistance to multiple stress conditions. Among the resistance strategies, one could be the formation of biofilm, a lifestyle known to enhance persistence of microorganisms. In this study, we propose to characterize biofilm of B. bruxellensis in wine, especially through several microscopic analyses.

The capacity of the yeast to colonize supports was demonstrated, notably in wine. When biofilms developed on stainless steel chips were inoculated in wine, a considerable cell release from chip into wine was induced, followed by a growth of planktonic cells able to produce wine spoilage metabolites, such as 4-ethylphenol.

Besides the ability to form biofilm, B. bruxellensis is also able to display different cell morphologies, as demonstrated by microscopic observations. First, filaments were observed, playing a role in the structure of biofilm. For the first time, chlamydospore-like was described in this species, probably a potential additional resistance strategy. In addition, a polymorphism of vegetative cells was revealed. Using image analysis, we have shown that strains having different genotyping presented different morphology. Based on this link, a deep learning method was adapted to predict the genetic group of a strain from a simple microscopic observation.

Taken together, all of these features and strategies lead B. bruxellensis to persist in environment and to contaminate wine. Moreover, morphology of vegetative cells could be newly considered as indicator of a strain resistance capacity since the sensitivity to SO2 depend on the strain genetic group.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Manon LEBLEUX, Emmanuel Denimal, Hany ABDO, Christian COELHO, Louise Basmaciyan, Hervé Alexandre, Stéphanie Weidmann, Sandrine ROUSSEAUX

Presenting author

Manon LEBLEUX – Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102 Dijon-France. Laboratoire VAlMiS-IUVV

Agrosup Dijon, Direction Scientifique, Appui A La Recherche, 26 Boulevard Docteur Petitjean, Dijon, F-21000, France, Laboratoire Valmis-IUVV | Université Bourgogne Franche-Comté, Agrosup Dijon, PAM UMR A 02.102 Dijon-France. Laboratoire PCAV | Université Bourgogne Franche-Comté, Agrosup Dijon, PAM UMR A 02.102 Dijon-France. Laboratoire Valmis-IUVV

Contact the author

Keywords

Brettanomyces bruxellensis – wine spoilage – biofilm – morphology – deep learning

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

The use of viticultural and oenological performance of grapevines to identify terroirs: the example of Sauvignon blanc in Stellenbosch

Identification and characterisation of terroirs depends on knowledge of environmental parameters, functioning of the grapevine and characteristics of the final product. A network of plots of Sauvignon blanc was delimited in commercial vineyards in proximity to weather stations at 20 localities and their viticultural and oenological response was monitored for a period of seven years. These experimental plots were further characterised with respect to climate, soil and topography.

Drought responses in Chardonnay and Sauvignon blanc grapevine cultivars: Mechanistic insights and varietal contrasts

This study explored the responses of Chardonnay and Sauvignon blanc grapevine cultivars to water deficit across four years, uncovering their shared patterns and distinctive coping mechanisms. The research was conducted in a commercial vineyard located in Isla de Maipo, Chile. Various characterization approaches were employed including plant water potentials (), gas exchange measurements, shoot vulnerability curves, productivity assessments, and leaf cell water relations. Linear mixed models and sensitivity analyses were performed using various statistical methods to evaluate cultivar responses to water deficit. As the water deficit progressed, both cultivars displayed a parallel reduction in stomatal conductance, leaf turgor, and increased shoot embolism.

Zeowine: the synergy of zeolite and compost. Effects on vine physiology and grape quality

The trial aims to improve the protection and management of the soil, the well-being of the plant and the quality of production in the wine supply chain organic and biodynamic, using an innovative product “ZEOWINE” resulting from the composting of waste of the wine and zeolite supply chain.

The concept of terroir: what place for microbiota?

Microbes play key roles on crop nutrient availability via biogeochemical cycles, rhizosphere interactions with roots as well as on plant growth and health. Recent advances in technologies, such as High Throughput Sequencing Techniques, allowed to gain deeper insight on the structure of bacterial and fungal communities associated with soil, rhizosphere and plant phyllosphere. Over the past 10 years, numerous scientific studies have been carried out on the microbial component of the vineyard. Whether the soil or grape compartments have been taken into account, many studies agree on the evidence of regional delineations of microbial communities, that may contribute to regional wine characteristics and typicity. Some authors proposed the term “microbial terroir” including “yeast terroir” for grapes to describe the connection between microbial biogeography and regional wine characteristics. Many factors are involved in terroir including climate, soil, cultivar and human practices as well as their interactions. Studies considering “microbial terroir” greatly contributed to improve our knowledge on factors that shape the vineyard microbial structure and diversity. However, the potential impact of “microbial terroir” on wine composition has yet not received strong scientific evidence and many questions remain to be addressed, related to the functional characterization of the microbial community and its impact on plant physiology and grape composition, the origins and interannual stability of vineyard microbiota, as well as their impact on wine sensorial attributes. The presentation will give an overview on the role of microbiota as a terroir component and will highlight future perspectives and challenges on this key subject for the wine industry.

Can early defoliation improve fruit composition of Tempranillo grapevines in the semi-arid terroir of Utiel-Requena, Spain?

Early defoliation has been found a useful tool to reduce cluster compactness and to improve fruit composition in vigorous sites of different viticultural areas. Our objective was to test the usefulness