WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Monitoring of Sangiovese red wine chemical and sensory parameters along one-year aging in different tank materials and glass bottle

Monitoring of Sangiovese red wine chemical and sensory parameters along one-year aging in different tank materials and glass bottle

Abstract

The aim of this study was to test how different tank materials could affect the chemical composition and the sensory profile of a red wine during an entire year of aging. For this scope, a single varietal Sangiovese wine was aged, after completing its malolactic fermentation, by using tanks made by different materials. Six thesis were involved in the aging experiment, in particular: stainless steel, epoxy-coated concrete, uncoated concrete, earthenware raw amphorae, and new and used oak barrels. Wines were characterized for their chemical and sensory profile. Phenolic and volatile compounds, elementals content, tartaric stability and sensory discriminant attributes of Sangiovese wine from 2018 harvest were measured after 6 and 12 months of aging in tanks, and 6 months in glass bottle (after the aging of 6 months carried out in each relevant container). The results showed that the different tanks significantly differentiated the wines on the base of all the chemical and sensory parameters considered. In particular, wines aged in earthenware raw amphorae and uncoated concrete registered a high content in polymeric pigments as the new oak barrel, resulting the materials that better promote the wine color stabilization. The same wines also showed the highest pH and tartaric stability, mostly due to the observed release of elementals from the tank material into wine. Bottle aging mostly enhanced the chemical and sensory differences between all the wines: they were characterized by higher content of varietal volatiles such as norisoprenoids and terpenes, probably due to the reductive conditions in bottle. The bottle affected also the perceived quality of the wines aged in concrete associated to the floral flavor, floral odor, sweetness attributes, and to a lesser extent to acidity, while the ones aged in stainless steel and amphorae to the berry jam odor.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Francesco Maioli, Monica Picchi, Alessandro Parenti, Luisa Andrenelli, Bruno Zanon, Valentina Canuti

Presenting author

Francesco Maioli – University of Florence

University of Florence | University of Padua

Contact the author

Keywords

Amphorae aging – Tank material – Phenolic and volatile profile  – Sensory profile  – Sangiovese red wine

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Direct NMR evidence for the dissociation of sulfur-dioxide-bound acetaldehyde under acidic conditions: Impact on wines oxidative stability

SO2 reaction with electrophilic species present in wine, including in particular carbonyl compounds, is responsible for the reduction of its protective effect during wine aging. In the present study, direct 1H NMR profiling was used to monitor the reactivity of SO2 with acetaldehyde under wine-like oxidation conditions.

Influence of different Lachancea thermotolerans strains in wine acidity

Wine acidity is a parameter of great importance that influences different quality factors of the product such as biological stability or organoleptic characteristics. In the current context of climate change, which gives rise to wines with higher levels of ethanol and lower acidity, the biological acidification with yeast species such as Lachancea thermotolerans could be a solution.
In this work, the effect of the inoculation of different L. thermotolerans on the acidity of wine was studied.

Integrated approaches for the functional characterization of miRNAs in grapevine

Micro(mi)RNAs are small non-coding RNAs that regulate several pathways and are widely recognised as key players in plant development, tissue differentiation, and many other important physiological processes, including plant adaptation to biotic and abiotic stresses. The release of plant genomes and the application of high throughput sequencing have considerably extended miRNA discovery across many species, including grapevine (Vitis spp.). Despite their relevance in plant development, functional studies in grapevine to clarify the function of miRNAs are not yet available. Through the grapevine genetic improvement platform IMPROVIT at CNR-IPSP (http://www.ipsp.cnr.it/en/thematics/turin-headquarter-thematics/improvit/), we developed integrated approaches to discover miRNA function in grapevine.

Testing the effectiveness of Cell-Wall material from grape pomace as fining agent for red wines

Lately several works highlighted the capacity of grape cell-wall material (CWM) to interact with proanthocyanidins (PA), indicating its potential use as fining agent for red wines.1–4 However, those studies were performed by using purified PAs and very high doses of CWM (almost ten-fold higher than those used in wine industry for other commercial fining agents). The present study focuses on the applicability of CWM from Cabernet sauvignon pomace as fining agent for red wines under real winery conditions. Grapes of cultivar Cabernet sauvignon were harvested at three different maturity levels
(unripe, mature, and overripe) and used for red winemaking. The pomace of such vinifications were used as source of CWM, and applied into red wines at two different concentrations: 0.2 g/L and 2.5 g/L.

Étude de l’adaptation des cépages Muscat à petits grains et Muscat d’Alexandrie dans l’A.O.C. Muscat de Rivesaltes

L’A.O.C. Muscat de Rivesaltes prévoit l’utilisation de 2 cépages Muscats : le Muscat à petits grains (M.P.G) et le Muscat d’Alexandrie (M.A).