WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Monitoring of Sangiovese red wine chemical and sensory parameters along one-year aging in different tank materials and glass bottle

Monitoring of Sangiovese red wine chemical and sensory parameters along one-year aging in different tank materials and glass bottle

Abstract

The aim of this study was to test how different tank materials could affect the chemical composition and the sensory profile of a red wine during an entire year of aging. For this scope, a single varietal Sangiovese wine was aged, after completing its malolactic fermentation, by using tanks made by different materials. Six thesis were involved in the aging experiment, in particular: stainless steel, epoxy-coated concrete, uncoated concrete, earthenware raw amphorae, and new and used oak barrels. Wines were characterized for their chemical and sensory profile. Phenolic and volatile compounds, elementals content, tartaric stability and sensory discriminant attributes of Sangiovese wine from 2018 harvest were measured after 6 and 12 months of aging in tanks, and 6 months in glass bottle (after the aging of 6 months carried out in each relevant container). The results showed that the different tanks significantly differentiated the wines on the base of all the chemical and sensory parameters considered. In particular, wines aged in earthenware raw amphorae and uncoated concrete registered a high content in polymeric pigments as the new oak barrel, resulting the materials that better promote the wine color stabilization. The same wines also showed the highest pH and tartaric stability, mostly due to the observed release of elementals from the tank material into wine. Bottle aging mostly enhanced the chemical and sensory differences between all the wines: they were characterized by higher content of varietal volatiles such as norisoprenoids and terpenes, probably due to the reductive conditions in bottle. The bottle affected also the perceived quality of the wines aged in concrete associated to the floral flavor, floral odor, sweetness attributes, and to a lesser extent to acidity, while the ones aged in stainless steel and amphorae to the berry jam odor.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Francesco Maioli, Monica Picchi, Alessandro Parenti, Luisa Andrenelli, Bruno Zanon, Valentina Canuti

Presenting author

Francesco Maioli – University of Florence

University of Florence | University of Padua

Contact the author

Keywords

Amphorae aging – Tank material – Phenolic and volatile profile  – Sensory profile  – Sangiovese red wine

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Efficient irrigation strategies and water use reduction in the high quality production regions of Priorat and Montsant (Spain)

Priorat and Montsant Appellations of Origin are located in the south of Catalonia (North‐East Spain), under severe Mediterranean climatic conditions

Understanding novel germplasm solutions: sensory, chemical and preliminary hedonic insights of wines made from Australian first-generation mildew resistant cultivars

One of the major issues for wine production in Australia is the management and eradication of powdery and downy mildews and the associated yield losses they present, costing Australian grape growers upwards of AUD$160M per annum [1].

Non-invasive headspace sorptive extraction for monitoring volatile compounds production by saccharomyces and non-saccharomyces strains throughout alcoholic fermentation

Wine is a solution containing abundant volatile compounds which contribute to their aroma. Many of them are produced by yeast as metabolism by-products. Different yeast strains produce different volatile profiles. The possibility of studying the evolution of volatile compounds during fermentation, using sampling methods that not alter the volume of fermentation media, is of great interest. In spite of this, non-invasive methods to monitoring the evolution of volatile profile during fermentation have been seldom used. The goals of this work were to use by first time the headspace sorptive extraction (HSSE) as non-invasive method to monitor the evolution of volatile profiles throughout alcoholic fermentation and to study the changes on volatile profiles produced by Saccharomyces cerevisiae and Lachancea thermotolerans during fermentation of a must with high sugar content.

Hyperspectral imaging and machine learning for monitoring grapevine physiology

Rootstocks are gaining importance in viticulture as a strategy to combat abiotic challenges, as well as enhancing scion physiology and attributes. Therefore, understanding how the rootstock affects photosynthesis is insightful for genetic improvement of either genotype in the grafted grapevines. Photosynthetic parameters such as maximum rate of carboxylation of RuBP (Vcmax) and the maximum rate of electron transport driving RuBP regeneration (Jmax) have been identified as ideal targets for breeding and genetic studies. However, techniques used to directly measure these photosynthetic parameters are limited to the single leaf level and are time-consuming measurements.

Regenerative agricultural winegrowing systems play a role in refining the expression of terroir in the pacific coast region of United States and Canada

By definition, Regenerative Agricultural Systems seek to promote soil and plant health by using photosynthesis for the removal and retention of atmospheric carbon dioxide into stable soil carbon.