WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 OTR determination of aged closures: Impact on aroma compounds composition of Sauvignon blanc wines

OTR determination of aged closures: Impact on aroma compounds composition of Sauvignon blanc wines

Abstract

Oxygen transfer rate (OTR) is a technical property of closure, and it modulates the oxygen supply to the wine during its bottle aging. It’s an important parameter to take into account in the analysis of wine aroma evolution. OTR distribution is well documented for new closures, but little research has been published on its determination for aged closures. Initial oxygen release after bottling impacts the composition of wines during the first years of storage), but the link between OTR, sensory perception and aroma composition after many years of aging has not yet been clearly studied. 

This study aimed at assaying the OTR of closures by coulometry as well as the determination of eight revelant volatile molecular markers by GC-MS/MS, including 3-SH, 3-sulfanylhexanol acetate (3-SHA), 4-MSP, Ethyl-2-sulfanylacetate (E2SA), furfurylthiol, methional, phenylacetaldehyde and sotolon. Additional enological parameters were also studied such as dissolved CO2, free and bound SO2, and OD420. Oxidation intensity was also evaluated by a trained panel. The goal was to evaluate the correlation between OTR value of aged closures, concentration of chemical markers and sensory analysis of wine samples. 

We applied this methodology to two set of wines. In a first experiment, a Sauvignon blanc wine sealed with eight different types of closures (natural corks, three microagglomerate corks, two synthetics and two screw caps), was analysed after fourteen years of aging. Our results reveal that, comparing to other stoppers, natural corks exhibit the greatest variability with OTRs values ranging from 0.38 mg/year to 44.9 mg/year. This oxygen transfer rate significantly impacts the balance between thiols vs. other oxidation related compounds.

In a second part, nineteen whites wines from different wineries from a same appellation, sealed with different stoppers (natural and microagglomerate corks) were selected. We demonstrate that regardless of the intrinsic quality of the wine, after six years of aging, OTR plays a fundamental role in the shelf life of the wine. Based on our results, OTRs < 0.3 mg/year seem to delay the premature oxidation characteristics (loss of varietal thiols and increase in oxidation markers). These observations were confirmed by sensory evaluation of wines.

DOI:

Publication date: June 14, 2022

Issue: WAC 2022

Type: Article

Authors

Emilie Suhas, Cécile Thibon, Christophe Loisel, Philippe Darriet, Alexandre Pons

Presenting author

Emilie Suhas – Univ. Bordeaux, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV, F-33140 Villenave d’Ornon,  France

Univ. Bordeaux, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV, F-33140 Villenave d’Ornon,  France | Diam Bouchage, Céret, France | Univ. Bordeaux, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV, F-33140 Villenave d’Ornon | Univ. Bordeaux, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV, F-33140 Villenave d’Ornon,  France -Tonnellerie Seguin Moreau, Cognac France, France 

Contact the author

Keywords

Oxygen transfer rate (OTR)-oxidative stress-shelf life-thiols-sensory analysis

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Data fusion approaches for sensory and multimodal chemistry data applied to storage conditions

The need to combine multimodal data for complex samples is due to the different information captured in each of the techniques (modes).

ACIDIC AND DEMALIC SACCHAROMYCES CEREVISIAE STRAINS FOR MANAGING PROBLEMS OF ACIDITY DURING THE ALCOHOLIC FERMENTATION

In a recent study several genes controlling the acidification properties of the wine yeast Saccharomyces cerevisiae have been identified by a QTL approach [1]. Many of these genes showed allelic variations that affect the metabolism of malic acid and the pH homeostasis during the alcoholic fermentation. Such alleles have been used for driving genetic selection of new S. cerevisiae starters that may conversely acidify or deacidify the wine by producing or consuming large amount of malic acid [2]. This particular feature drastically modulates the final pH of wine with difference of 0.5 units between the two groups.

Lead levels in fortified wines

AIM The main lead exposure route is the intake of contaminated food, water, and alcoholic beverages, in particular wine. At the gastric level, Pb is transformed into a soluble compound which, when conveyed into the bloodstream, is the long-term cause of saturnism, intoxication with neurotoxic, nephrotoxic and hematopoietic effects, and with the neurological developmental delay of children. Pb is classified by the International Agency for Research on Cancer as a 2A class, possible carcinogenic to humans. In an opinion on possible health risks, CONTAM considered that cereals, vegetables, drinking water, and wine give a greater contribute to dietary exposure to Pb in Europe. Large quantities of wine, beer, and other alcoholic products drinking can increase daily Pb intake above the maximum permitted levels.

Fructose implication in the Sotolon formation in fortified wines: preliminary results

Sotolon (3-hydroxy-4,5-dimethyl-2(5H)-furanone) is a naturally occurring odorant compound with a strong caramel/spice-like scent, present in many foodstuffs. Its positive contribution for the aroma of different fortified wines such as Madeira, Port and Sherry is recognized. In contrast, it is also known to be responsible for the off-flavor character of prematurely aged dry white wines. The formation mechanisms of sotolon in wine are still not well elucidated, particularly in Madeira wines, which are submitted to thermal processing during its traditional ageing. The sotolon formation in these wines has been related to sugar degradation mechanisms, particularly from fructose [1].

‘TROPICAL’ POLYFUNCTIONAL THIOLS AND THEIR ROLE IN AUSTRALIAN RED WINES

Following anecdotal evidence of unwanted ‘tropical’ character in red wines resulting from vineyard interventions and a subsequent yeast trial observing higher ‘red fruit’ character correlated with higher thiol concentrations, the role of polyfunctional thiols in commercial Australian red wines was investigated.
First, trials into the known tropical thiol modulation technique of foliar applications of sulfur and urea were conducted in parallel on Chardonnay and Shiraz.1 The Chardonnay wines showed expected results with elevated concentrations of 3-sulfanylhexanol (3-SH) and 3-sulfanylhexyl acetate (3-SHA), whereas the Shiraz wines lacked 3-SHA. Furthermore, the Shiraz wines were described as ‘drain’ (known as ‘reductive’ aroma character) during sensory evaluation although they did not contain thiols traditionally associated with ‘reductive’ thiols (H2S, methanethiol etc.).