WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 OTR determination of aged closures: Impact on aroma compounds composition of Sauvignon blanc wines

OTR determination of aged closures: Impact on aroma compounds composition of Sauvignon blanc wines

Abstract

Oxygen transfer rate (OTR) is a technical property of closure, and it modulates the oxygen supply to the wine during its bottle aging. It’s an important parameter to take into account in the analysis of wine aroma evolution. OTR distribution is well documented for new closures, but little research has been published on its determination for aged closures. Initial oxygen release after bottling impacts the composition of wines during the first years of storage), but the link between OTR, sensory perception and aroma composition after many years of aging has not yet been clearly studied. 

This study aimed at assaying the OTR of closures by coulometry as well as the determination of eight revelant volatile molecular markers by GC-MS/MS, including 3-SH, 3-sulfanylhexanol acetate (3-SHA), 4-MSP, Ethyl-2-sulfanylacetate (E2SA), furfurylthiol, methional, phenylacetaldehyde and sotolon. Additional enological parameters were also studied such as dissolved CO2, free and bound SO2, and OD420. Oxidation intensity was also evaluated by a trained panel. The goal was to evaluate the correlation between OTR value of aged closures, concentration of chemical markers and sensory analysis of wine samples. 

We applied this methodology to two set of wines. In a first experiment, a Sauvignon blanc wine sealed with eight different types of closures (natural corks, three microagglomerate corks, two synthetics and two screw caps), was analysed after fourteen years of aging. Our results reveal that, comparing to other stoppers, natural corks exhibit the greatest variability with OTRs values ranging from 0.38 mg/year to 44.9 mg/year. This oxygen transfer rate significantly impacts the balance between thiols vs. other oxidation related compounds.

In a second part, nineteen whites wines from different wineries from a same appellation, sealed with different stoppers (natural and microagglomerate corks) were selected. We demonstrate that regardless of the intrinsic quality of the wine, after six years of aging, OTR plays a fundamental role in the shelf life of the wine. Based on our results, OTRs < 0.3 mg/year seem to delay the premature oxidation characteristics (loss of varietal thiols and increase in oxidation markers). These observations were confirmed by sensory evaluation of wines.

DOI:

Publication date: June 14, 2022

Issue: WAC 2022

Type: Article

Authors

Emilie Suhas, Cécile Thibon, Christophe Loisel, Philippe Darriet, Alexandre Pons

Presenting author

Emilie Suhas – Univ. Bordeaux, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV, F-33140 Villenave d’Ornon,  France

Univ. Bordeaux, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV, F-33140 Villenave d’Ornon,  France | Diam Bouchage, Céret, France | Univ. Bordeaux, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV, F-33140 Villenave d’Ornon | Univ. Bordeaux, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV, F-33140 Villenave d’Ornon,  France -Tonnellerie Seguin Moreau, Cognac France, France 

Contact the author

Keywords

Oxygen transfer rate (OTR)-oxidative stress-shelf life-thiols-sensory analysis

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Heat-stress responses regulated via a MYB24-MYC2 complex

Throughout the growing season, grapevine frequently encounters environmental challenges associated with heat and light radiation stress, especially during the ripening stage, thereby constraining the yield and quality of berries. MYB24 has been previously proposed to control light responses during late fruit ripening stages, and it has been found to require the co-factor MYC2. We have generated transcriptomic data from grapevine leaves transiently co-transformed with MYB24 and MYC2. Differential expression analysis revealed 179 up-regulated genes (URGs). Considering tissue specificity, where MYB24 is specifically and highly expressed in flowers and late-ripening berries, the expression of these URGs was explored using a previously published Berry Development Atlas gathering berry development data of cv. ‘Pinot Noir’ and ‘Cabernet Sauvignon’ in different vintages.

Sensory study of potential kokumi compounds in wine 

Kokumi is a complex sensation perceived as enhanced palatability. Under the influence of kokumi substances, foods/beverages tastes become more flavorful with increased intensity, spread, continuity, richness, harmony, and punch which are the six related characteristics corresponding to the kokumi sensory concept (Yamamoto & Inui-Yamamoto 2023).

Intravarietal diversity: an opportunity for climate change adaptation

Merlot grapevine is the second wine cultivar most planted in the world and especially in the Bordeaux wine region. This cultivar has many advantages in producing high quality wine; however, in the last decade, climate change has increased the sugar concentration in berries at harvest and shortened the maturation cycle. If this has been up to now a great opportunity to improve wine quality profile, we are touching the tipping point. High sugar concentration at harvest induces high alcool content in wine which can negatively impact wine quality. There are many viticultural and oenological practices possible to limit this effect. In this study we focus on plant material through intra-varietal diversity of Merlot cultivar.

FLAVANOL COMPOSITION OF VARIETAL AND BLEND WINES MADE BEFORE AND AFTER FERMENTATION FROM SYRAH, MARSELAN AND TANNAT

Background: The Flavan-3-ol extraction from grape skin and seed during red-winemaking and their retention into wines depend on many factors, some of which are modified in the winemaking of blend wines. Recent research shows that Marselan, have grapes with high proportion of skins with high concentrations of flavanols, but produces red-wines with low proportion of skin derived flavanols, differently to the observed in Syrah or Tannat. But the factors explaining these differences are not yet understood.

Quantification of newly identified C8 aroma compounds in musts and wines as an analytical tool for the early detection of Fresh Mushroom Off-Flavor

The Fresh Mushroom Off-Flavor (FMOff) is a concerning undesirable aroma in wine specific of certain vintages, characterized by a typical button mushroom aroma. The appearance of this off-flavor is linked to the presence of certain fungus on the grape [1-3].