WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Changes in white wine composition after treatment with cationic exchange resin: impact on wine oxidation after 8 years of bottle storage

Changes in white wine composition after treatment with cationic exchange resin: impact on wine oxidation after 8 years of bottle storage

Abstract

Samples from 3 wine types were treated with a cationic exchange resin (7 lots) and stored for 8 years (47 samples). Forty-seven parameters were determined, including (1) important substrates with impact in white wine oxidation and (2) markers of oxidation. From group 1, sugars, elements, phenolic compounds, α-dicarbonyls and SO2 and from group 2, browning (A420), acetaldehyde, alkanals, furanic compounds were quantified.

Results regarding the cationic exchange resin impact after storage shown that is dependent on wine composition. Good correlations with browning were obtained for wines with higher concentration of phenolic compounds (flavan-3-ols, protocatechuic and coumaric acids) and copper. While aromatic degradation related with the formation of Strecker aldehydes was positive correlated with methyl glyoxal and negatively correlated with iron and glucose concentrations. 

PLS-DA was performed against three classes established based on phenylacetaldehyde formation, and results confirm that methylglyoxal is a substrate for phenylalanine Strecker degradation and the presence of glucose can reduce the formation of the aldehyde after long periods of storage.

DOI:

Publication date: June 14, 2022

Issue: WAC 2022

Type: Article

Authors

António César da Silva Ferreira, Ana Rita, Monforte

Presenting author

António César da Silva Ferreira – Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina; IWBT – DVO University of Stellenbosch

Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina

Contact the author

Keywords

white wine, oxidation, ageing, target, methylglyoxal, Strecker

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Terroir aspects of harvest timing in a cool climate wine region: physiology, berry skin phenolic composition and wine quality

Preliminary experiment of harvest timing was carried out in Eger wine district, Hungary in 2009. In situ physiological responses, berry quality parameters and wine quality of the Kékfrankos grapevine were studied at two growing sites (Eger-K6lyuktet6 – non-stressed, flat vineyard, and Eger-Nagyeged hill – water stressed, steep slope vineyard).

Vineyard nutrient budget and sampling protocols

Vineyard nutrient management is crucial for reaching production-specific quality standards, yet timely evaluation of nutrient status remains challenging. The existing sampling protocol of collecting vine tissue (leaves and/or petioles) at bloom or veraison is time-consuming. Additionally, this sampling practice is too late for in-season fertilizer applications (e.g. N is applied well before bloom). Therefore alternative early-season protocols are necessary to predict the vine nutrient demand for the upcoming season. The main goals of this project are to 1) optimize existing tissue sampling protocols; 2) determine the amount of nutrients removed at the end of the growing season.

First characterization of thiol precursors in colombard and gros manseng: comparison of two cultivation practices

AIM: Organic production of wine in the past years has known an important augmentation. This type of cultivation practice switches synthetic phytosanitary product for copper-based protection as fungicide.

Influence of cell-cell contact on yeast interactions and exo-metabolome

Alcoholic fermentation is the main step for winemaking, mainly performed by the yeast Saccharomyces cerevisiae. But other wine yeasts called non-Saccharomyces may contribute to alcoholic fermentation and modulate the wine aroma complexity. The recurrent problem with the use of these non-Saccharomyces yeasts is their trend to die off prematurely during alcoholic fermentation, leading to a lack of their interesting aromatic properties searched in the desired wine. This phenomenon appears to be mainly due to interactions with S. cerevisiae. These interactions are often negatives but remain unclear because of the species and strain specific response. Among the non-Saccharomyces yeasts, Lachancea thermotolerans is a wine yeast naturally found in grape must and well known as a great L-lactic acid producer and an aromatic molecules enhancer, but its behavior during alcoholic fermentation can be completely different in co-fermentation with S. cerevisiae in function of strain used.

Bioprotective effect of a Torulaspora delbrueckii/Lachancea thermotolerans mixed inoculum and its impact on wines made.

SO2 is an additive widely used as antimicrobial in winemaking industry. However, this compound can negatively affect health, so the search for alternatives is currently a line of research of great interest. One of the proposed alternatives to SO2 as an antimicrobial is the use of bioprotection yeasts, which colonize the medium preventing the proliferation of undesirable microorganisms.