WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Changes in white wine composition after treatment with cationic exchange resin: impact on wine oxidation after 8 years of bottle storage

Changes in white wine composition after treatment with cationic exchange resin: impact on wine oxidation after 8 years of bottle storage

Abstract

Samples from 3 wine types were treated with a cationic exchange resin (7 lots) and stored for 8 years (47 samples). Forty-seven parameters were determined, including (1) important substrates with impact in white wine oxidation and (2) markers of oxidation. From group 1, sugars, elements, phenolic compounds, α-dicarbonyls and SO2 and from group 2, browning (A420), acetaldehyde, alkanals, furanic compounds were quantified.

Results regarding the cationic exchange resin impact after storage shown that is dependent on wine composition. Good correlations with browning were obtained for wines with higher concentration of phenolic compounds (flavan-3-ols, protocatechuic and coumaric acids) and copper. While aromatic degradation related with the formation of Strecker aldehydes was positive correlated with methyl glyoxal and negatively correlated with iron and glucose concentrations. 

PLS-DA was performed against three classes established based on phenylacetaldehyde formation, and results confirm that methylglyoxal is a substrate for phenylalanine Strecker degradation and the presence of glucose can reduce the formation of the aldehyde after long periods of storage.

DOI:

Publication date: June 14, 2022

Issue: WAC 2022

Type: Article

Authors

António César da Silva Ferreira, Ana Rita, Monforte

Presenting author

António César da Silva Ferreira – Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina; IWBT – DVO University of Stellenbosch

Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina

Contact the author

Keywords

white wine, oxidation, ageing, target, methylglyoxal, Strecker

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Integrative study of Vitis biodiversity for next-generation breeding of grapevine rootstocks 

Drought is one of the main challenges for viticulture in the context of global change. The choice of rootstock could be leveraged for vineyard adaptation to drought as we can improve plant performance without modifying the scion variety. However, most of the existing rootstocks, selected over a century ago, have a narrow genetic background which could compromise their adaptive potential.

A multidisciplinary approach to assess the impact of future drought scenarios on vineyard ecosystems

Drought events can strongly affect grapevine and berry physiology and subsequent wine quality, as widely demonstrated in controlled experiments.

Application of high-throughput sequencing tools for characterisation of microbial communities during alcoholic fermentation

Developments in high-throughput sequencing (HTS) technologies allow us to obtain large amounts of microbial information from wine and must samples. Thus approaches, that are aimed at characterising the microbial diversity during fermentation, can be enhanced, or possibly even replaced, with HTS-based metabarcoding. To reduce experimental biases and increase data reproducibility, we compared 3 DNA extraction methods by evaluating differences in the fungal diversity with Riesling alcoholic fermentation samples at four different vineyards. The fungal diversity profiling was done using the genetic markers ITS2 and D2 using metabarcoding. The extraction methods compared consisted of a commercial kit, a recently published protocol that includes a DNA enhancer, and a protocol based on a buffer containing common inhibitor removal reagents. All methods were able to distinguish vineyard effects on the fungal diversity, but the results differed quantitatively.

High pressure homogenization of wine lees. A tool to streamline the management of wine ageing

Aging on lees (AOL) has been used for wine aging for a long time, thanks to its ability to modify wine composition, improving sensory characteristics and stability. However, the prolonged contact with fermentation lees may increase the risk of developing sensory defects, due to the growth of unwanted microorganisms. Furthermore, AOL requires a large amount of work to manage bâtonnage and for topping up the barrels, significantly increasing production costs.

Organic volatile compounds as suitable markers of grapevine response to defense elicitors in the vineyard

In greenhouse, emission of volatile organic compounds (VOC) by grapevine leaves has already been reported in response to the defence elicitor sulfated laminarin (PS3) [1]. In order to check that this response was not specific to PS3, experiments were conducted on Vitis cv Marselan plantlets with several other elicitors of different chemical structures: i.e. Bastid® (COS-OGA),