WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Direct NMR evidence for the dissociation of sulfur-dioxide-bound acetaldehyde under acidic conditions: Impact on wines oxidative stability

Direct NMR evidence for the dissociation of sulfur-dioxide-bound acetaldehyde under acidic conditions: Impact on wines oxidative stability

Abstract

SO2 reaction with electrophilic species present in wine, including in particular carbonyl compounds, is responsible for the reduction of its protective effect during wine aging. In the present study, direct 1H NMR profiling was used to monitor the reactivity of SO2 with acetaldehyde under wine-like oxidation conditions. The dissociation of acetaldehyde bound SO2 was evidenced suggesting that released free SO2 can further act as an antioxidant. EPR and DPPH assays showed an increasing antioxidant capacity of wine with the increase in the concentration of acetaldehyde sulfonate. The presence of acetaldehyde sulfonate in wines was correlated with the overall antioxidant activity of wines. The first direct evidence of acetaldehyde bound SO2 dissociation provides a completely new representation of the long-term protection efficiency of SO2 during bottle aging.

DOI:

Publication date: June 14, 2022

Issue: WAC 2022

Type: Article

Authors

Sofia Tachtalidou, Nicolas Sok, Franck Denat, Laurence Noret, Philippe Schmit-Kopplin, Maria Nikolantonaki, Régis D. Gougeon

Presenting author

Sofia Tachtalidou – UMR PAM Université de Bourgogne/Agro Sup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Dijon, France

UMR PAM Université de Bourgogne/Agro Sup Dijon, France | Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR 6302, CNRS, Université Bourgogne Franche-Comté, 21078 Dijon, France | UMR PAM Université de Bourgogne/Agro Sup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Dijon, France | Analytical BioGeoChemistry Research Unit, Helmholtz Zentrum München, and Technical University of Munich, Germany | UMR PAM Université de Bourgogne/Agro Sup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Dijon, France | UMR PAM Université de Bourgogne/Agro Sup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Dijon, France

Contact the author

Keywords

antioxidant activity-white wine-oxidation-chardonnay-aldehydes

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Limiting magnesium availability: a novel approach to managing brettanomyces spoilage in winemaking

Brettanomyces is a world-renowned yeast that negatively impacts the chemical composition of wines through the production of metabolites that negatively impact the sensory properties of the final product. Its resilience in wine conditions and ability to produce off-flavors make it a challenge for winemakers. Currently, the primary control technique involves adding sulfur dioxide (SO2); however, some Brettanomyces strains are developing resistance to this preservative agent. [1] Therefore, new management strategies are necessary to control this spoilage yeast.

Influence of dehydration and maceration conditions on VOCs composition and olfactory profile of Moscato Bianco passito sweet wine

Among the Vitis vinifera L. cv. Moscato, Moscato Bianco is the oldest and most cultivated one in Europe (1). According to the OIV Focus 2015, Italy is the country with the largest cultivated area of Moscato Bianco with about 12500 hectares (2), that is used to produce well-known wines (i.e., Moscato Passito in Piedmont, Moscato di Trani in Puglia, and Moscatello di Montalcino in Tuscany), mainly obtained from partially dehydrated grapes (1). Different dehydration techniques can strongly modify the chemical compounds of oenological interest, among which Volatile Organic Compounds (VOCs) (1) that are the main responsible for the varietal sensory character of the final wine.

Exploring the effect of oxygen exposure during malolactic fermentation on red wine color

this research investigates the impact of early oxygen exposure, also during malolactic fermentation (MLF), on pigments and color of a red wine from Sangiovese grapes

Effect of must temperature and aspergillopepsin-I supplementation on PR-protein derived peptides

Protein instability in wines is challenging, and despite many efforts to find satisfactory alternatives to bentonite, both in terms of stability and quality, the solutions are limited in the wine industry.

Unveiling Metschnikowia spp.: mechanisms and impacts of bioprotection in winemaking

Bioprotection, leveraging beneficial microorganisms, has emerged as a sustainable approach to modern winemaking, minimizing reliance on chemical preservatives like as sulfur dioxide (SO₂).