WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 4 - WAC - Oral presentations 9 Health benefits of wine industry by-products

Health benefits of wine industry by-products

Abstract

The total global production of wine in 2021 was estimated at around 250 million hectoliters. The 30% of the total quantity of vinified grapes corresponds to wine by-products that represent nearly 20 million tons, of which 50% corresponds to the European Union. Wine by-products have been used for different purposes, in agriculture, cosmetics, pharmacy, biorefinery, feed, and the food industry. The main waste streams with food interest are grape pomace (GP) and wine lees. GP is the residue that originated after the pressing of red and white grapes to produce must or wine. It is constituted by the stems, skins, and seeds. GP is a winery by-product that is more and more valorized as a source of healthy bioactive molecules, such as polyphenols and other interesting molecules (pigments, fibers, minerals, etc.). The main polyphenols detected in grape pomace include hydroxycinnamic acids, hydroxybenzoic acids, flavan-3-ols, flavonols, and stilbenes. Phenolic compounds from grapes exert positive benefits on human health; many of these compounds have been shown to have potent antioxidant activities. Significant antioxidant activity has been observed from pomace and seed flour extract of grapes. Grape seed extract may be useful for the prevention of certain metabolic syndromes and cardiovascular disease. Grape and grape products also possess other important properties including anti-radiation, anti-mutagenic, anti-inflammatory, anti-bacterial, and other beneficial effects. The abundance of bioactive compounds assures a promising future to produce nutritional foodstuffs. Wine by-products can be valuably used to fortify aromatized waters and infusions, bread, pasta, dairy products, alcohol, sugary beverages, and processed foods. These innovative products that could be included in Mediterranean Diet are of great interest for our health and our planet.

DOI:

Publication date: June 14, 2022

Issue: WAC 2022

Type: Article

Authors

Paula Silva, Abel Salazar 

Presenting author

Paula Silva – Laboratory of Histology and Embryology, Institute of Biomedical Sciences Abel Salazar (ICBAS), Rua de Jorge Viterbo Ferreira nº228, 4050-313 Porto, Portugal ICNOVA – NOVA Institute of Communication, NOVA School of Social Sciences and Humanities, Universidade NOVA de Lisboa, Lisbon, Portugal

Contact the author

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Smartphone as a tool for deficit irrigation management in Vitis vinifera  

Vine water status is one of the most influential factors in grape vigor, yield, and quality (Ojeda et al., 2002; Guilpart et al., 2014). Severe water deficits during the first stage of crop development (bud break to fruit set) impact yield in the current year and the following year. While during grape ripening, water availability impacts berry size, grape composition, and health status. Therefore, a correct assessment of plant water status allows for proper water management with an impact on grape yield and composition (McClymont et al, 2012; Pereyra et al., 2022).

Genetic determinism of grapevine development stages as a tool for the adaptation to climate change

A major goal of modern grapevine (Vitis vinifera L.) breeding programs is the introgression of resistance genes along with desirable traits for better adaptation to climate change. Developmental stages have an impact on yield components and berry composition and are expected to shift towards earlier dates in the future. We investigated the genetic determinism of phenological stages in the progeny of a cross between two grapevine hybrids, each carrying several quantitative trait loci (QTL) for downy mildew and powdery mildew resistance.

Heatwaves impacts on grapevine physiology, berry chemistry & wine quality

Climate change impacts on both yields and quality have increased over the past decades, with the effects of extreme climate events having the most dramatic and obvious impacts. Increasing length and intensity of heatwaves associated with increased water stress necessitates a reevaluation of climate change responses of grapevine and, ultimately, a reconsideration of vineyard management practices under future conditions. Here we summarize results from a three-year field trial manipulating irrigation prior to and during heatwave events to assess impacts of water application rates on vine health and physiology, berry chemistry, and wine quality. We also highlight potential mitigation strategies for extreme heat, both in terms of water application, as well as other cultural practices that could be widely applicable.

Future projections for chilling and heat forcing for European vineyards

Aims: The aims of this study were: (1) to compute recent-past thermal conditions over European vineyards, using state-of-the art bioclimatic indices: chilling portions and growing degree hours; (2) to compute future changes of these thermal conditions using a large ensemble of high-resolution climate models.

Model-assisted analysis of the root traits underlying RSA genotypic diversity in Vitis: a promising approach for rootstock selection?

By dissecting the root system architecture (RSA) into its underpinning components (e.g. root emission, axial growth, radial growth, branching, root direction or tropism) and identifying the relationships between them, functional-structural 3D root models are promising tools for analyzing the diversity and complexity of root system phenotypes with Genotype × Environment interactions. The model parameters are assumed to be synthetic traits, less influenced by the environment, and consequently with less polygenic architectures than the integrative RSA traits they drive. Root models can serve as a basis for in silico development of root system ideotypes by highlighting the developmental processes and parameters that most likely influence RSA fitness.