WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 4 - WAC - Oral presentations 9 Health benefits of wine industry by-products

Health benefits of wine industry by-products

Abstract

The total global production of wine in 2021 was estimated at around 250 million hectoliters. The 30% of the total quantity of vinified grapes corresponds to wine by-products that represent nearly 20 million tons, of which 50% corresponds to the European Union. Wine by-products have been used for different purposes, in agriculture, cosmetics, pharmacy, biorefinery, feed, and the food industry. The main waste streams with food interest are grape pomace (GP) and wine lees. GP is the residue that originated after the pressing of red and white grapes to produce must or wine. It is constituted by the stems, skins, and seeds. GP is a winery by-product that is more and more valorized as a source of healthy bioactive molecules, such as polyphenols and other interesting molecules (pigments, fibers, minerals, etc.). The main polyphenols detected in grape pomace include hydroxycinnamic acids, hydroxybenzoic acids, flavan-3-ols, flavonols, and stilbenes. Phenolic compounds from grapes exert positive benefits on human health; many of these compounds have been shown to have potent antioxidant activities. Significant antioxidant activity has been observed from pomace and seed flour extract of grapes. Grape seed extract may be useful for the prevention of certain metabolic syndromes and cardiovascular disease. Grape and grape products also possess other important properties including anti-radiation, anti-mutagenic, anti-inflammatory, anti-bacterial, and other beneficial effects. The abundance of bioactive compounds assures a promising future to produce nutritional foodstuffs. Wine by-products can be valuably used to fortify aromatized waters and infusions, bread, pasta, dairy products, alcohol, sugary beverages, and processed foods. These innovative products that could be included in Mediterranean Diet are of great interest for our health and our planet.

DOI:

Publication date: June 14, 2022

Issue: WAC 2022

Type: Article

Authors

Paula Silva, Abel Salazar 

Presenting author

Paula Silva – Laboratory of Histology and Embryology, Institute of Biomedical Sciences Abel Salazar (ICBAS), Rua de Jorge Viterbo Ferreira nº228, 4050-313 Porto, Portugal ICNOVA – NOVA Institute of Communication, NOVA School of Social Sciences and Humanities, Universidade NOVA de Lisboa, Lisbon, Portugal

Contact the author

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Citizen science for promoting a disease-resistant grape variety through a wine competition

The societal pressure to reduce the use of pesticides in Switzerland is steadily increasing. Viticulture is particularly in focus due to the frequent use of fungicides to combat downy and powdery mildew.

Water recharge before budbreak and/or deficit irrigation during summer: agronomic effects on cv. Tempranillo in the D.O. Ribera del Duero

The availability of water in the soil and the water status of the vineyard are proving to be determining factors for crop management in the current context of climatic variation

Using δ13C and hydroscapes as a tool for discriminating cultivar specific drought response

Measurement of carbon isotope discrimination in berry juice sugars at maturity (δ13C) provides an integrated assessment of water use efficiency (WUE) during the period of berry ripening, and when collected over multiple seasons can be used as an indication of drought stress response. Berry juice δ13C measurements were carried out on 48 different varieties planted in a common garden experiment in Bordeaux, France from 2014 through 2021 and were paired with midday and predawn leaf water potential measurements on the same vines in a subset of six varieties. The aim was to discriminate a large panel of varieties based on their stomatal behaviour and potentially identify hydraulic traits characterizing drought tolerance by comparing δ13C and hydroscapes (the visualisation of plant stomatal behaviour as a response to predawn water potential). Cluster analysis found that δ13C values are likely affected by the differing phenology of each variety, resulting in berry ripening of different varieties taking place under different stress conditions within the same year. We accounted for these phenological differences and found that cluster analysis based on specific δ13C metrics created a classification of varieties that corresponds well to our current empirical understanding of their relative drought tolerances. In addition, we analysed the water potential regulation of the subset of six varieties (using the hydroscape approach) and found that it was well correlated with some δ13C metrics. Surprisingly, a variety’s water potential regulation (specifically its minimum critical leaf water potential under water deficit) was strongly correlated to δ13C values under well-watered conditions, suggesting that base WUE may have a stronger impact on drought tolerance than WUE under water deficit. These results give strong insights on the innate WUE of a very large panel of varieties and suggest that studies of drought tolerance should include traits expressed under non-limiting conditions.

Hidden costs of wine: quantifying environmental externalities of organic and integrated management

Agriculture is one of the largest contributors to environmental pollution and causing significant impacts on human health, ecosystems, and resource availability.

Streamlining rootstock selection: new indices for efficiency and stability in viticulture

Grapevine rootstocks play a pivotal role in influencing scion vigor, yield, and fruit quality, making their selection critical for sustainable vineyard management.