WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 4 - WAC - Oral presentations 9 Health benefits of wine industry by-products

Health benefits of wine industry by-products

Abstract

The total global production of wine in 2021 was estimated at around 250 million hectoliters. The 30% of the total quantity of vinified grapes corresponds to wine by-products that represent nearly 20 million tons, of which 50% corresponds to the European Union. Wine by-products have been used for different purposes, in agriculture, cosmetics, pharmacy, biorefinery, feed, and the food industry. The main waste streams with food interest are grape pomace (GP) and wine lees. GP is the residue that originated after the pressing of red and white grapes to produce must or wine. It is constituted by the stems, skins, and seeds. GP is a winery by-product that is more and more valorized as a source of healthy bioactive molecules, such as polyphenols and other interesting molecules (pigments, fibers, minerals, etc.). The main polyphenols detected in grape pomace include hydroxycinnamic acids, hydroxybenzoic acids, flavan-3-ols, flavonols, and stilbenes. Phenolic compounds from grapes exert positive benefits on human health; many of these compounds have been shown to have potent antioxidant activities. Significant antioxidant activity has been observed from pomace and seed flour extract of grapes. Grape seed extract may be useful for the prevention of certain metabolic syndromes and cardiovascular disease. Grape and grape products also possess other important properties including anti-radiation, anti-mutagenic, anti-inflammatory, anti-bacterial, and other beneficial effects. The abundance of bioactive compounds assures a promising future to produce nutritional foodstuffs. Wine by-products can be valuably used to fortify aromatized waters and infusions, bread, pasta, dairy products, alcohol, sugary beverages, and processed foods. These innovative products that could be included in Mediterranean Diet are of great interest for our health and our planet.

DOI:

Publication date: June 14, 2022

Issue: WAC 2022

Type: Article

Authors

Paula Silva, Abel Salazar 

Presenting author

Paula Silva – Laboratory of Histology and Embryology, Institute of Biomedical Sciences Abel Salazar (ICBAS), Rua de Jorge Viterbo Ferreira nº228, 4050-313 Porto, Portugal ICNOVA – NOVA Institute of Communication, NOVA School of Social Sciences and Humanities, Universidade NOVA de Lisboa, Lisbon, Portugal

Contact the author

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Effect of grape harvest time on the metabolomic profile of ribolla gialla monovarietal sparkling wines

The timing of grape harvest is crucial factor to be considered in the winemaking process, as delayed harvest increases the content of varietal aromas, esters, aldehydes

‘TROPICAL’ POLYFUNCTIONAL THIOLS AND THEIR ROLE IN AUSTRALIAN RED WINES

Following anecdotal evidence of unwanted ‘tropical’ character in red wines resulting from vineyard interventions and a subsequent yeast trial observing higher ‘red fruit’ character correlated with higher thiol concentrations, the role of polyfunctional thiols in commercial Australian red wines was investigated.
First, trials into the known tropical thiol modulation technique of foliar applications of sulfur and urea were conducted in parallel on Chardonnay and Shiraz.1 The Chardonnay wines showed expected results with elevated concentrations of 3-sulfanylhexanol (3-SH) and 3-sulfanylhexyl acetate (3-SHA), whereas the Shiraz wines lacked 3-SHA. Furthermore, the Shiraz wines were described as ‘drain’ (known as ‘reductive’ aroma character) during sensory evaluation although they did not contain thiols traditionally associated with ‘reductive’ thiols (H2S, methanethiol etc.).

Aromas of Riesling wine: impact of bottling and storage conditions

Storage temperature and bottling parameters are among the most important factors, which influence the development of wine after bottling. It is well studied that higher storage temperatures speed up chemical reactions and results in faster wine aging [1,2]. It is also known that higher SO2 level and lower oxygen content provide better protection and longer shelf-life for the wine. At the same time, the mechanisms of chemical transformations of wine aromas during the aging process are not fully understood. In particular, how oxidation reactions contribute to the transformations of varietal aroma compounds.In the present study [3], we investigated the development of Riesling wine depending on a series of bottling conditions, which differed in the free SO2 level in wine (low—13 mg/L, medium—24 mg/L, high—36 mg/L), CO2 treatment of the headspace.

Remote sensing and ground techniques, applied to the characterization of a new viticultural region at Pinto Bandeira, Brazil

The region of viticultural production near Pinto Bandeira, Brazil, is being studied to define typical characteristics of wines locally produced.

Building new temperature indexes for a local understanding of grapevine physiology

Aim: Temperature corresponds to one of the main terroir factors influencing grapevine physiology, primarily evidenced by its impact on phenology. Numerous studies have aimed at expressing time with thermal indices such as growing degree days (GDD) and have thus enabled a better modelling of grapevine responses to temperature. However, some works have highlighted the need to adapt