WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 4 - WAC - Oral presentations 9 A nutraceutical based on mediterranean diet with omega-3 fatty acid and resveratrol from grapewine counteracts ocular degenerative diseases

A nutraceutical based on mediterranean diet with omega-3 fatty acid and resveratrol from grapewine counteracts ocular degenerative diseases

Abstract

More recently, studies have shown that polyphenols could also prevent or improve vision in patients with ocular diseases and especially Age-related macular degeneration (AMD) which is an eye disease characterized by damage to the central part of the retina, the macula, and that affects millions of people worldwide. Despite therapeutic advances thanks to the use of anti-vascular endothelial growth factor (VEGF), many resistance mechanisms have been found to accentuate the visual deficit. In the present study, we explored whether a nutraceutical supplementation based on mediterranean diet associating polyphenols from red wine and omega-3 fatty acids was able to counteract laser-induced choroidal neovascularization (CNV) in mice and moleular mechanism involved in neaovasculariation of AMD. We highlight that nutraceutical formulation, Resvega®, composed of DHA/EPA and resveratrol, significantly reduced CNV in mice and a proteomic approach confirmed that Resvega® could counteract the progression of AMD through a pleiotropic effect targeting key regulators of neoangiogenesis in retina cells in vivo. These events were associated with an accumulation of resveratrol metabolites within the retina. A molecular analysis revealed that Resvega®, inhibited VEGF-A secretion in vitro by disrupting the dissociation of the VEGF-R2/Cav-1 complex into rafts and subsequently preventing MAPK activation. Moreover, DNA ChIP analysis reveals that this combination prevents the interaction between AP-1 and vegf-a and vegf-r2 gene promoters. Therefore, a supplementation of omega-3/resveratrol could improve the management or slow the progression of AMD in patients with this condition.

This work was supported by grants from the ANRT N°2016/0003, by a French Government grant managed by the French National Research Agency under the program “Investissements d’Avenir”, reference ANR-11-LABX-0021, the Conseil Régional Bourgogne, Franche-Comte (PARI grant) and the FEDER (European Funding for Regional Economic Development).

DOI:

Publication date: June 14, 2022

Issue: WAC 2022

Type: Article

Authors

Dominique Delmas, Flavie Courtaut, Virginie Aires, Niyazi Acar, Lionel Bretillon, Alessandra Scagliarini, Clarisse Cornebise, Ida Chiara Guerrera, Cerina Chhuon, Jean-Paul Pais de Barros, Céline Olmiere

Presenting author

Dominique Delmas – Inserm Research Center U1231, University of Bourgogne

Inserm Research Center U1231, University of Bourgogne | Inserm Research Center U1231, University of Bourgogne | Eye and Nutrition Research Group, Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon | Eye and Nutrition Research Group, Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon | Inserm Research Center U1231, University of Bourgogne | Inserm Research Center U1231, University of Bourgogne | Proteomics Platform Necker, Université de Paris | Proteomics Platform Necker, Université de Paris | Lipidomic Analytical Platform, 21000 Dijon | Laboratoires Thea, 12 Rue Louis-Blériot, 63000 Clermont-Ferrand

Contact the author

Keywords

Resveratrol, fatty acids, mediterranean supplementation, ocular disease

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Late season canopy management practices to reduce sugar loading and improve color profile of Cabernet-Sauvignon grapes and wines in the high irradiance and hot conditions of California Central Valley

Global warming is accelerating grape ripening, leading to unbalanced wines from fruit with high sugar content but poor aroma and colour development. Reducing the size of the photosynthetic apparatus after veraison has been shown to delay technological ripeness in cool climates, but methods have not been tested in areas with high irradiance and temperature where fruit exposure could have disastrous effects on berry composition. In this Cabernet-Sauvignon trial, we compared the application of an antitranspirant (pinolene), to severe canopy topping and above bunch zone leaf removal, all performed at mid-ripening, with an untouched control. We monitored the vines weekly by measuring stem water potential, gas exchange, fruit zone light exposure. We sampled berries to measure berry weight, total soluble solids, pH, titratable acidity, and the anthocyanin profile. At harvest, we assessed yield components, measured carbon isotope discrimination, rated sunburn on clusters, and produced experimental wines. We submitted harvest samples to metabolomic profiling through PFP-Q Exactive MS/MS and wines to sensory analysis. Application of the antitranspirant significantly reduced stomatal conductance and assimilation rate but did not affect the stem water potential. Inversely, leaf removal and topping increased water potential but did not affect leaf gas exchange. The late topping was the only treatment able to decrease sugar content (up to 2Bx), increase titratable acidity and pH, and improve anthocyanin content because of lower degradation of di-hydroxylated forms. Late leaf removal above the bunch zone increased lightning conditions in the canopy and produced the most significant damage on fruits. Yield components were not affected. This work suggests that late-season canopy management can effectively control ripening speeds and improve grapes and wines. Still, the effect on grape exposure in a critical time must be well balanced to avoid problems with the appropriate technique.

Efficacy of tannins of different botanical origin as partial or total substitute of SO2 to preserve a Cortese white wine during storage in cellar

While SO2 is one of the oldest and widest additive used in enology for its well-known antioxidant, anti-laccase and antimicrobial properties, it can cause health problems in some individuals.

Grapevine under nutrient stress: exploring the adaptive mechanisms in response to iron deficiency conditions

In plants, stress due to nutrient deficiency can significantly impair their development and productivity.

Using gene editing to improve the hydraulic properties of grapevine roots under water stress conditions

Context and purpose of the study. Epidermal Patterning Factors are a family of small peptides that are highly conserved in the plant kingdom and are involved in several physiological and developmental processes.

Overcoming habit formation in the production of wine

Evidence indicates that climate change affects the environment, human health, and well-being via drought, increasing greenhouse effect, and climatic catastrophes. As the wine sector is also negatively affected by climate change, the role of climate change mitigation and adaptation policies is important in wine production. One example of an adaptation policy is the implementation of grapevine genetics (duchene, 2016), while organic farming may be used as an approach to mitigate the consequences of climate change (vinci et al., 2022). To this end, the european commission’s objective is to reach the european green deal target of at least 25% of the european union’s agricultural land under organic farming by 2030.