WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 4 - WAC - Oral presentations 9 A nutraceutical based on mediterranean diet with omega-3 fatty acid and resveratrol from grapewine counteracts ocular degenerative diseases

A nutraceutical based on mediterranean diet with omega-3 fatty acid and resveratrol from grapewine counteracts ocular degenerative diseases

Abstract

More recently, studies have shown that polyphenols could also prevent or improve vision in patients with ocular diseases and especially Age-related macular degeneration (AMD) which is an eye disease characterized by damage to the central part of the retina, the macula, and that affects millions of people worldwide. Despite therapeutic advances thanks to the use of anti-vascular endothelial growth factor (VEGF), many resistance mechanisms have been found to accentuate the visual deficit. In the present study, we explored whether a nutraceutical supplementation based on mediterranean diet associating polyphenols from red wine and omega-3 fatty acids was able to counteract laser-induced choroidal neovascularization (CNV) in mice and moleular mechanism involved in neaovasculariation of AMD. We highlight that nutraceutical formulation, Resvega®, composed of DHA/EPA and resveratrol, significantly reduced CNV in mice and a proteomic approach confirmed that Resvega® could counteract the progression of AMD through a pleiotropic effect targeting key regulators of neoangiogenesis in retina cells in vivo. These events were associated with an accumulation of resveratrol metabolites within the retina. A molecular analysis revealed that Resvega®, inhibited VEGF-A secretion in vitro by disrupting the dissociation of the VEGF-R2/Cav-1 complex into rafts and subsequently preventing MAPK activation. Moreover, DNA ChIP analysis reveals that this combination prevents the interaction between AP-1 and vegf-a and vegf-r2 gene promoters. Therefore, a supplementation of omega-3/resveratrol could improve the management or slow the progression of AMD in patients with this condition.

This work was supported by grants from the ANRT N°2016/0003, by a French Government grant managed by the French National Research Agency under the program “Investissements d’Avenir”, reference ANR-11-LABX-0021, the Conseil Régional Bourgogne, Franche-Comte (PARI grant) and the FEDER (European Funding for Regional Economic Development).

DOI:

Publication date: June 14, 2022

Issue: WAC 2022

Type: Article

Authors

Dominique Delmas, Flavie Courtaut, Virginie Aires, Niyazi Acar, Lionel Bretillon, Alessandra Scagliarini, Clarisse Cornebise, Ida Chiara Guerrera, Cerina Chhuon, Jean-Paul Pais de Barros, Céline Olmiere

Presenting author

Dominique Delmas – Inserm Research Center U1231, University of Bourgogne

Inserm Research Center U1231, University of Bourgogne | Inserm Research Center U1231, University of Bourgogne | Eye and Nutrition Research Group, Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon | Eye and Nutrition Research Group, Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon | Inserm Research Center U1231, University of Bourgogne | Inserm Research Center U1231, University of Bourgogne | Proteomics Platform Necker, Université de Paris | Proteomics Platform Necker, Université de Paris | Lipidomic Analytical Platform, 21000 Dijon | Laboratoires Thea, 12 Rue Louis-Blériot, 63000 Clermont-Ferrand

Contact the author

Keywords

Resveratrol, fatty acids, mediterranean supplementation, ocular disease

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

A browser application for comprehensive 3-dimensional LC × LC × IM – MS data analysis to study grape and wine polyphenols

The analysis of structurally diverse proanthocyanidins in grapes and wine is challenging. Comprehensive two-dimensional liquid chromatography (LC×LC) and ion mobility spectrometry-mass spectrometry (IMS-MS) are increasingly used to address the challenges associated with the analysis of highly complex samples such as wine and grapes

The problem of the increasing pH in sparkling wines caused by climate change: use of cationic exchange to correct it

In recent years, the increase in temperature and the changes in rainfall distribution caused by climate change are affecting vine and grape physiology and are consequently impacting wine composition and quality (Schultz, 2000; Jones et al., 2005).

Mobilizing endogenous transposable elements for grapevine improvement: a genomic and epigenomic approach in New Zealand Sauvignon Blanc

Efforts to improve the New Zealand wine industry’s climate resilience and sustainability through grapevine improvement are limited by germplasm availability and a reliance on Sauvignon Blanc exports. To address this, we are working to generate a population of 12,000 individuals with unique genetic traits, from which to select future clones for major export varieties.

Sauvignon Blanc plantlets are being regenerated from embryogenic callus, using an approach designed to mobilise endogenous transposable elements as mutagens.

Development of a standardized method for metabolite analysis by NMR to assess wine authenticity

The wine sector generates a considerable amount of wealth but is facing a growing problem of fraud. Wine counterfeiting is one of the oldest and most common cases of food fraud worldwide. Therefore, the authenticity and traceability of wine are major concerns for both the industry and consumers. To address these issues, robust and reliable analysis and control methods are necessary. Several methods have been developed, ranging from simple organoleptic tests to more advanced methodologies such as isotopic techniques or residual radioactivity measurements.

Effects of different organic amendments on soil, vine, grape and wine, in a long-term field experiment in Chinon vineyard (France)

In a long-term experiment carried out in Chinon vineyard (37, France) during 23 years, the effects of several organic amendments were studied on soil, vine, grapes and wine. Four main treatments were compared on a calcareous sandy soil: control without organic amendment, dry crushed pruning wood at 2.1.t-1.ha-1.year-1 (D1), cow manure at 10 t-1. ha-1.year-1 (D1) and cow manure applied at 20 t-1.ha-1.year-1 (D2). D1 levels were calculated to fill the annual humus losses by mineralization.