WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 4 - WAC - Oral presentations 9 Wine lees: characterization and valorization by kombucha fermentation

Wine lees: characterization and valorization by kombucha fermentation

Abstract

Winemaking generates various types of residues (vine shoots, stalks, pomace, wine lees and filtration cakes) which can have a notable environmental and economic impact. Wine by-products are rich in bioactive compounds and therefore their valorization can be beneficial on different levels. Lees are the material that settles after vinification, and consist mainly of yeast cells, grape skins, tartrates, phenolic compounds, and other residues. The objective of this study was to valorize the wine lees by the Kombucha process in order to create a new beverage. 

Kombucha is a traditional beverage obtained by the fermentation of sweetened tea with a symbiotic culture of yeast and bacteria. The consumption of kombucha is associated with many health benefits due to its rich composition in bioactive compounds. Different substrates were used as raw material for Kombucha fermentation, and the obtained beverages displayed an increase in the concentration of biological compounds and enhancement of health activities. 

Red wine lees used in this study presented a pH of 3.31 ± 0.01, a total acidity of 2.86 ± 0.45 g/L (sulfuric acid equivalent), a total polyphenol content of 2041 ± 233.35 mg/L GAE (Gallic acid equivalent), and an antioxidant activity of 59.03 ± 4.25 % inhibition against DPPH radicals. 

In order to ferment the wines lees by Kombucha Scoby, wine lees were subject to two dilutions of 1:2 and 1:4. These dilutions were fermented for 24 days at 25°C. Samples were taken each 3 days in order to monitor the physico-chemical evolution of the new beverage. Results showed that the sugar consumption (70 g/L) was not complete after 24 days of fermentation. pH of the new beverage is 2.88. Fermentation time and substrate concentration influenced the studied variables, for instance the strongest antioxidant activity was detected on the 9th day for the lees kombucha diluted to the half (93.27%) whereas the highest quantity of polyphenols was found on day 21 (1599.30 mg/L GAE).

DOI:

Publication date: June 14, 2022

Issue: WAC 2022

Type: Article

Authors

Youssef El Rayess, Nathalie Barakat, Sandra Beaufort, Samar Azzi-Achkouty, Ziad Rizk, Chantal Ghanem, Abdo Tannoury, Jalloul Bouajila, Patricia Taillandier, Youssef El Rayess

Presenting author

Youssef El Rayess – Department of Agriculture and Food Engineering, Holy spirit University of Kaslik, Jounieh, Lebanon

Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France | Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France | Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon | Lebanese Agricultural Research Institute, Fanar Station, P.O. Box 90-1965, Jdeidet El-Metn, Fanar, Lebanon | Lebanese Agricultural Research Institute, Fanar Station, P.O. Box 90-1965, Jdeidet El-Metn, Fanar, Lebanon | Lebanese Agricultural Research Institute, Fanar Station, P.O. Box 90-1965, Jdeidet El-Metn, Fanar, Lebanon | Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France | Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France | Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon 

Contact the author

Keywords

wine lees-Kombucha-polyphenols-antioxidants

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Rootstock influence on xylem embolized vulnerability and scion behavior under severe water deficit

Severe water stress events can induce cavitation damage by xylem embolism in grapevine, diminishing plant hydraulic conductance. This work aimed to determine the rootstock effects on 1) xylem embolism vulnerability to understand its function failure under severe drought, including segmentation processes from leaf to root; and 2) hydraulic conductance across water deficit and its recovery. For this purpose, two complementary experiments were performed in one-year-old Vitis vinifera cv. Tempranillo grafted onto two different rootstocks (110-Richter and SO4) under well-watered 12L pot conditions. In experiment 1, the water-stress induced xylem embolism was monitored in leaves and stems, above and below grafting-point, by using “Cavicam” for determining the percentage of embolized vessels (at P12, P50 and P88).

Effect of rising atmospheric CO2 levels on grapevine yield and composition by the middle of the 21st century: what can we learn from the VineyardFACE?

Atmospheric CO2 levels have been rising continuously since the industrial revolution, affecting crop physiology, yield and quality of harvest products, and grapevine is no exception [1]. Most of previously reported studies used potted plants in controlled environments, and explored grapevine response to relatively high CO2 levels, 700 ppm or more. The vineyardFACE, established in Geisenheim in 2012, uses a free air carbon dioxide enrichment (FACE) system to simulate a moderate (ambient +20%) increase in atmospheric CO2 in a vineyard planted with cvs. Cabernet-Sauvignon and Riesling grafted on rootstock 161-49 Couderc and SO4, respectively.

Grape ripening and wine style: synchronized evolution of aromatic composition of shiraz wines from hot and temperate climates of Australia

Grape ripening is a process driven by the interactions between grapevine genotypes and environmental factors. Grape composition is largely responsible for the production

Under-vine cover crops in viticulture: impact of different weed management practices on weed suppression, yield and quality of grapevine cultivar Riesling

The regulation of weeds, particularly in the under-vine area of grapevines, is essential for the maintenance of grape yield and quality.

Influence of trellis system and shoot density in yield and grape composition of a vineyard of Cabernet Sauvignon, in warm climate

In vineyards grown in warm areas, it is usual that the stage of maturity of the grapes is fast and easily reach a high concentration of sugar and low acidity, but not a adequate phenolic maturation. The geometry of the trellis system and the shoot density can modify the microclimate of the cluster and, therefore, the maturation process.