WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 4 - WAC - Oral presentations 9 Wine lees: characterization and valorization by kombucha fermentation

Wine lees: characterization and valorization by kombucha fermentation

Abstract

Winemaking generates various types of residues (vine shoots, stalks, pomace, wine lees and filtration cakes) which can have a notable environmental and economic impact. Wine by-products are rich in bioactive compounds and therefore their valorization can be beneficial on different levels. Lees are the material that settles after vinification, and consist mainly of yeast cells, grape skins, tartrates, phenolic compounds, and other residues. The objective of this study was to valorize the wine lees by the Kombucha process in order to create a new beverage. 

Kombucha is a traditional beverage obtained by the fermentation of sweetened tea with a symbiotic culture of yeast and bacteria. The consumption of kombucha is associated with many health benefits due to its rich composition in bioactive compounds. Different substrates were used as raw material for Kombucha fermentation, and the obtained beverages displayed an increase in the concentration of biological compounds and enhancement of health activities. 

Red wine lees used in this study presented a pH of 3.31 ± 0.01, a total acidity of 2.86 ± 0.45 g/L (sulfuric acid equivalent), a total polyphenol content of 2041 ± 233.35 mg/L GAE (Gallic acid equivalent), and an antioxidant activity of 59.03 ± 4.25 % inhibition against DPPH radicals. 

In order to ferment the wines lees by Kombucha Scoby, wine lees were subject to two dilutions of 1:2 and 1:4. These dilutions were fermented for 24 days at 25°C. Samples were taken each 3 days in order to monitor the physico-chemical evolution of the new beverage. Results showed that the sugar consumption (70 g/L) was not complete after 24 days of fermentation. pH of the new beverage is 2.88. Fermentation time and substrate concentration influenced the studied variables, for instance the strongest antioxidant activity was detected on the 9th day for the lees kombucha diluted to the half (93.27%) whereas the highest quantity of polyphenols was found on day 21 (1599.30 mg/L GAE).

DOI:

Publication date: June 14, 2022

Issue: WAC 2022

Type: Article

Authors

Youssef El Rayess, Nathalie Barakat, Sandra Beaufort, Samar Azzi-Achkouty, Ziad Rizk, Chantal Ghanem, Abdo Tannoury, Jalloul Bouajila, Patricia Taillandier, Youssef El Rayess

Presenting author

Youssef El Rayess – Department of Agriculture and Food Engineering, Holy spirit University of Kaslik, Jounieh, Lebanon

Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France | Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France | Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon | Lebanese Agricultural Research Institute, Fanar Station, P.O. Box 90-1965, Jdeidet El-Metn, Fanar, Lebanon | Lebanese Agricultural Research Institute, Fanar Station, P.O. Box 90-1965, Jdeidet El-Metn, Fanar, Lebanon | Lebanese Agricultural Research Institute, Fanar Station, P.O. Box 90-1965, Jdeidet El-Metn, Fanar, Lebanon | Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France | Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France | Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon 

Contact the author

Keywords

wine lees-Kombucha-polyphenols-antioxidants

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

VALORIZATION OF GRAPE WINE POMACE USING PULSED ELECTRIC FIELDS (PEF) AND SUPERCRITICAL CO₂ (SC CO₂) EXTRACTION

Wine grape pomace quantitatively and qualitatively represents the most important fraction of wine waste. Namely, this by-product makes ~ 20% of the total mass of vinified grapes, and it is characterized with high concentrations of polyphenolic antioxidants, as well as grape seed oil. Hence, valorization of wine pomace, as an alternative to traditionally employed disposal, has drown considerable interest in recent years. Earlier studies were mostly focused on the extraction of phenolics, while mechanisms enhancing the extraction of lipid fraction from grape pomace, as well as their impact on the grape seed oil quality are far less investigated.

Can soil water content be used as a predictor of predawn leaf water potential for deficit irrigation scheduling? A case study at Alentejo wine region

Water and heat stress impose new challenges to irrigation management in the Mediterranean areas. This reality has a major impact on the vineyard ecosystem, particularly on the scarce water resources of the Alentejo region (South Portugal). To mitigate this problem, irrigation management should focus on optimizing yield and fruit quality per volume of water applied. This work aims to discuss the use of predawn leaf water potential and soil water status relationships as a decision tool for irrigation management taking as basis data from a field trial where two deficit irrigation strategies were compared.

High-throughput screening of physical-mechanical berry skin traits facilitates targeted selection of breeding material with resistance to Botrytis bunch rot and grape sunburn

The ongoing climate change implies an increasing mean air temperature, which is signified by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased risk for fungal diseases like downy mildew (DM) and Botrytis bunch rot (BBR) as well as for grape sunburn. To meet that demand, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality.

Identification of important genomic regions controlling resistance to biotic and abiotic stresses in Vitis sp. through QTL meta-analysis

In the context of global change, the environmental conditions are expected to be more stressful for viticulture. The choice of the rootstock may play a crucial role to improve the adaptation of viticulture to new biotic and abiotic threats (Ollat et al., 2016). However, the selection of interesting traits in rootstock breeding programs is complex because of the combination of multiple targets in a same ideotype. In this sense, the integration of studies about the genetic architecture for desired biotic and abiotic response traits allow us to identify genomic regions to combine and those with interesting pleiotropic effects.

Importance of the Terror Variability Map (TVM) in Precision viticulture (PV): choice of methodology for soil classification

The Precision Viticulture (PV) is defined “as a management system that is information and technology based, is site specific and uses one or more of the following sources of data: soils, vigour, nutrients, pests, moisture, and yield among others, for optimum profitability, sustainability, and protection of the environment” (OIV, 2018, in process). The elements mentioned in the definition are an important part of the terroir components. The terroir is a tool In Viticulture, it is the analysis and study unit, and the variability of a certain situation can be due to any difference in every element or property of each factor that constitutes it, including the management.The soil and its management are those that bring the most variability to terroir.