WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 4 - WAC - Oral presentations 9 Polyphenols in kombucha: Metabolomic analysis of biotransformations during fermentation

Polyphenols in kombucha: Metabolomic analysis of biotransformations during fermentation

Abstract

Kombucha is a non-alcoholic beverage made of sugared tea that is transformed by a symbiotic consortium of yeasts and bacteria. This beverage is increasingly produced at industrial scale, but its quality standards remain to be defined. Metabolomics analysis was carried out using FT-ICR-MS to understand the chemical transformations induced by the production phases and the type of tea on the non-volatile compounds of kombucha. Of the two production phases, the first phase of acidification in open vessel was the most impactful on molecular diversity, but tea type mainly influenced the global composition in polyphenol profiles. Black tea polyphenols were more impacted by microbial activity compared to green tea polyphenols. Independently from tea type, the first phase was also characterized by the release of gluconate from acetic acid bacteria metabolism. Gallate was also released and probably originated from the hydrolysis of ester bounds located in polymeric flavan-3-ols. The biotransformation of antioxidant polyphenols could positively impact their bioavailability for the consumer.

DOI:

Publication date: June 14, 2022

Issue: WAC 2022

Type: Article

Authors

Thierry, Tran, Rémy, Romanet, Chloé, Roullier-Gall, Antoine, Martin, Hervé, Alexandre,Cosette, Grandvalet, Tourdot-Maréchal, Philippe, Schmitt-Kopplin

Presenting author

Thierry, Tran – UMR PAM – Team VAlMiS

SATT Sayens, Chloé, Roullier-Gall | UMR PAM – Team VAlMiS, François, Verdier | Biomère | Biomère | Helmholtz Zentrum München | UMR PAM – Team VAlMiS | UMR PAM – Team VAlMiS | UMR PAM – Team VAlMiS 

Contact the author

Keywords

kombucha, metabolomics, polyphenols, bioavailability, fermentation

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Potential application of indigenous Pichia kluyveri for enhanced wine aroma quality

Aims: In previous work, five indigenous Pichia kluyveri strains, GS1-1, FS-2-7, HS-2-1, C730 and C732, were isolated and selected from spontaneous fermented wines from Ningxia and Gansu. The aims of this study were to 1) evaluate resistance of these strains to environmental stressors that may restrict their growth and the progress of alcoholic fermentation; 2) Investigate their fermentation dynamics; 3) Characterise aroma profiles of Cabernet Sauvignon wines made from mixed cultures of P. kluyveri and Saccharomyces cerevisiae.

α-Terpinyl ethyl ether: stereoselective GC × GC confirmation and identification of its precursors in wine

Wines exhibit profound chemical complexity which arise from a diverse array of compounds that contribute to its sensory profile.

El Malvasía en la isla de la Palma

El tema que me corresponde tratar en esta mini conferencia sobre “Caracterización vitivinícola de las Malvasías en Canarias”, es por razones obvias la parte que atañe a la Isla de La Palma.

WHAT’S FUTURE FOR SANTORINI’S VITICULTURE IN THE CONTEXT OF CLIMATE CHANGE

The own-rooted vineyard of Santorini is a unique case of vineyard worldwide that is been cultivated for thousands of years. On the island’s volcanic soil, the vines are still cultivated with traditional techniques, which are adapted to the specific and extreme weather conditions that prevail on it. While climate change is a reality in the Mediterranean region, will Santorini vineyard endure its impact? The study of the traditional training systems, techniques and vine density, as well as the application of sustainable solutions (cover crops and use of kaolin etc.) revealed sustainable methods for the adaptation of the local viticulture to new climatic phenomena that tend to be more and more frequent in the region due to climate change.

Effect of different plant fibers on the elimination of undesirable compounds in red wine. Correlation with its polysaccharide composition

The presence of undesirable compounds in wines, such as OTA, biogenic amines and pesticides residues, affects wine quality and can cause health problems for the consumer. The main tool that a winemaker has to reduce their content in the wine is fining. However, some of the fining agents commonly used in the winery can cause allergies or even increase the protein content in the wine, increasing the turbidity. To avoid these problems, the use of plant fibers may be an alternative, such as those from grape pomace[1] or other plant origins.