WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 4 - WAC - Oral presentations 9 Polyphenols in kombucha: Metabolomic analysis of biotransformations during fermentation

Polyphenols in kombucha: Metabolomic analysis of biotransformations during fermentation

Abstract

Kombucha is a non-alcoholic beverage made of sugared tea that is transformed by a symbiotic consortium of yeasts and bacteria. This beverage is increasingly produced at industrial scale, but its quality standards remain to be defined. Metabolomics analysis was carried out using FT-ICR-MS to understand the chemical transformations induced by the production phases and the type of tea on the non-volatile compounds of kombucha. Of the two production phases, the first phase of acidification in open vessel was the most impactful on molecular diversity, but tea type mainly influenced the global composition in polyphenol profiles. Black tea polyphenols were more impacted by microbial activity compared to green tea polyphenols. Independently from tea type, the first phase was also characterized by the release of gluconate from acetic acid bacteria metabolism. Gallate was also released and probably originated from the hydrolysis of ester bounds located in polymeric flavan-3-ols. The biotransformation of antioxidant polyphenols could positively impact their bioavailability for the consumer.

DOI:

Publication date: June 14, 2022

Issue: WAC 2022

Type: Article

Authors

Thierry, Tran, Rémy, Romanet, Chloé, Roullier-Gall, Antoine, Martin, Hervé, Alexandre,Cosette, Grandvalet, Tourdot-Maréchal, Philippe, Schmitt-Kopplin

Presenting author

Thierry, Tran – UMR PAM – Team VAlMiS

SATT Sayens, Chloé, Roullier-Gall | UMR PAM – Team VAlMiS, François, Verdier | Biomère | Biomère | Helmholtz Zentrum München | UMR PAM – Team VAlMiS | UMR PAM – Team VAlMiS | UMR PAM – Team VAlMiS 

Contact the author

Keywords

kombucha, metabolomics, polyphenols, bioavailability, fermentation

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Partial dealcoholisation of red wine by reverse osmosis-evaporative perstraction: impact on wine composition

Around the world, the alcohol content of wine has been steadily increasing; partly as a consequence of climate change, but also due to improvements in viticultural management practices and winemaking techniques [1,2]. Concurrently, market demand for wines with lower alcohol levels has increased as consumers seek to reduce alcohol intake for social and/or health reasons [3]. As such, there is increasing demand for both innovative methods that allow winemakers to produce ‘reduced alcohol wines’ (RAW) and a better understanding of the impact of such methods on the composition of RAW. This study therefore aimed to investigate compositional changes in two red wines resulting from partial alcohol removal following treatment by one such method, involving a combination of reverse osmosis and evaporative perstraction (RO-EP).

D-wines: use of LC-MS metabolomic space to discriminate italian mono-varietal red wines

Studying wine metabolome through multiple targeted methods is complicated and limitative; since grapes, yeasts, bacteria, oxygen, enological techniques and wine aging collaborate to deliver one of the richest metabolomic fingerprint.

“Q & A” of the european commission for labeling and desalcoholization for wines: european wine “soft-law”?

Recently, the European Commission seems to have inaugurated a new mechanism for regulating the wine sector. Through two communications, articulated in the form of “Questions & Answers”, concerning the new rules for labeling (24.11.2023) and dealcoholization of wine (15.01.2024), the Commission is not simply “explaining” the new rules but, in an approach close to the theory of “Circulaire Normative” established in comparative law, chooses among different interpretations and even adds Praeter Legem constraints.

Carbon footprint as a function of inter-annual climate variability in Uruguayan viticulture production systems

Climate change, driven by greenhouse gas (GHG) emissions, is one of humanity’s most significant environmental challenges.

AI and blockchain synergy-driven reconstruction of nutritional health value chains in the wine industry

The increasing demand for healthier, more transparent, and sustainable wine products has prompted the need for innovative solutions to optimize the wine health value chain.