WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 4 - WAC - Oral presentations 9 Epigenetic Modulation Of Inflammation And Synaptic Plasticity By Polyphenolic Metabolites Promotes Resilience Against Stress In Mice

Epigenetic Modulation Of Inflammation And Synaptic Plasticity By Polyphenolic Metabolites Promotes Resilience Against Stress In Mice

Abstract

Introduction: Major depressive disorder is associated with abnormalities in the brain and the immune system. Chronic stress in animals showed that epigenetic and inflammatory mechanisms play important roles in mediating resilience and susceptibility to depression.

Material & Methods: Here, through a high- throughput screening, we identify two phytochemicals, dihydrocaffeic acid (DHCA) and malvidin-3′-O-glucoside (Mal-gluc) that are effective in promoting resilience against stress by modulating brain synaptic plasticity and peripheral inflammation. DHCA/Mal-gluc also significantly reduces depression-like phenotypes in a mouse model of increased systemic inflammation induced by transplantation of hematopoietic progenitor cells from stress- susceptible mice.
Results: DHCA reduces pro-inflammatory interleukin 6 (IL-6) generations by inhibiting DNA methylation at the CpG-rich IL-6 sequences introns 1 and 3, while Mal-gluc modulates synaptic plasticity by increasing histone acetylation of the regulatory sequences of the Rac1 gene.

Conclusions:

This study suggests that polyphenolic metabolites capable of influencing peripheral inflammation and synaptic maladaptation may eventually be implemented as novel therapeutic interventions for promotion of mental health.

References

  1. Wang J, Gong B, Zhao W, Tang C, Varghese M, Nguyen T, Bi W, Bilski A, Begum S, Vempati P, Knable L, Ho L, Pasinetti GM. Epigenetic mechanisms linking diabetes and synaptic impairments. Diabetes 63(2):645-54 (2014).
  2. Herman F, Pasinetti GM. Principles of Inflammasome Priming and Inhibition: Implications for Psychiatric Disorders. Brain Behavior and Immunity DOI: 10.1016/j.bbi.2018.06.010 (2018).
  3. Herman F, Simkovic S, Pasinetti GM. The Neuroimmune Nexus of Depression and Dementia: Mechanisms and Targets. The British Journal of Pharmacology DOI: 10.1111/bph.14569 (2019).

DOI:

Publication date: June 14, 2022

Issue: WAC 2022

Type: Article

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Simultaneous monitoring of dissolved CO2 and collar from Rosé sparkling wine glasses: the impact of yeast macromolecules

Champagne or sparkling wines elaborated through the same traditional method, which consists in two major yeast-fermented steps, typically hold about 10 to 12 g/L of dissolved CO2 after the second fermentation in a closed bottle. Hundreds of molecules and macromolecules originating from grape and yeast cohabit with dissolved CO2; they are essential compounds contributing to many organoleptic characteristics (effervescence, foam, aroma, taste, colour…). Indeed, the second alcoholic fermentation and the maturation on lees (which may last from 12 months up to several years) both induce various quantitative and qualitative changes in the wine through the action of yeast, as listed hereafter: development of aromas during aging on lees, release of nitrogen compounds during autolysis and release of macromolecules (polysaccharides, lipids, nucleic acids) in wine.

The effectiveness of proximal remote sensors in plant water status evaluation of grapevine

Extensive studies have been conducted on grapevine responses to water deficit, but these responses are difficult to generalise since numerous factors can influence the response(s), including genotype, developmental stage, soil, climate, and season.

Exploiting somaclonal variability to increase drought stress tolerance in grapevine 

Global warming has enhanced the frequency and severity of drought events, hence calling for a better management of water resources in the vineyard and for an improvement of breeding platforms. Somatic embryogenesis (SE) (i.e. the initiation of embryos from somatic tissues) can spontaneously generate new genetic variability, which results from genetic mutations, changes in epigenetic marks, or phenotypic alterations.
This study was tailored to test whether vines in vitro regenerated through SE (i.e. somaclones), can tolerate water deprivation better than the mother plant.

Wine growing regions global climate analysis

We depict the main features of five viticulture agroclimatic indices for 626 wine growing regions within 41 countries.

Molecular characterization of wines nucleophilic potential by ultra-performance liquid chromatography high resolution mass spectrometry

The knowledge about the molecular fraction associated to white wines oxidative stability is still poorly understood.