WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 4 - WAC - Oral presentations 9 Epigenetic Modulation Of Inflammation And Synaptic Plasticity By Polyphenolic Metabolites Promotes Resilience Against Stress In Mice

Epigenetic Modulation Of Inflammation And Synaptic Plasticity By Polyphenolic Metabolites Promotes Resilience Against Stress In Mice

Abstract

Introduction: Major depressive disorder is associated with abnormalities in the brain and the immune system. Chronic stress in animals showed that epigenetic and inflammatory mechanisms play important roles in mediating resilience and susceptibility to depression.

Material & Methods: Here, through a high- throughput screening, we identify two phytochemicals, dihydrocaffeic acid (DHCA) and malvidin-3′-O-glucoside (Mal-gluc) that are effective in promoting resilience against stress by modulating brain synaptic plasticity and peripheral inflammation. DHCA/Mal-gluc also significantly reduces depression-like phenotypes in a mouse model of increased systemic inflammation induced by transplantation of hematopoietic progenitor cells from stress- susceptible mice.
Results: DHCA reduces pro-inflammatory interleukin 6 (IL-6) generations by inhibiting DNA methylation at the CpG-rich IL-6 sequences introns 1 and 3, while Mal-gluc modulates synaptic plasticity by increasing histone acetylation of the regulatory sequences of the Rac1 gene.

Conclusions:

This study suggests that polyphenolic metabolites capable of influencing peripheral inflammation and synaptic maladaptation may eventually be implemented as novel therapeutic interventions for promotion of mental health.

References

  1. Wang J, Gong B, Zhao W, Tang C, Varghese M, Nguyen T, Bi W, Bilski A, Begum S, Vempati P, Knable L, Ho L, Pasinetti GM. Epigenetic mechanisms linking diabetes and synaptic impairments. Diabetes 63(2):645-54 (2014).
  2. Herman F, Pasinetti GM. Principles of Inflammasome Priming and Inhibition: Implications for Psychiatric Disorders. Brain Behavior and Immunity DOI: 10.1016/j.bbi.2018.06.010 (2018).
  3. Herman F, Simkovic S, Pasinetti GM. The Neuroimmune Nexus of Depression and Dementia: Mechanisms and Targets. The British Journal of Pharmacology DOI: 10.1111/bph.14569 (2019).

DOI:

Publication date: June 14, 2022

Issue: WAC 2022

Type: Article

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Impact des systèmes de conduite, de la gestion des sols et de la capacité de rétention d’eau des sols sur l’état hydrique de la vigne à Cognac

Dans le cadre de TerclimPro 2025, Sébastien Zito a présenté un article IVES Technical Reviews. Retrouvez la présentation ci-dessous ainsi que l’article associé : https://ives-technicalreviews.eu/article/view/9161

Estudio de la fertilidad de los suelos para la zonificación vitícola de la D.O. MONTILLA-MORILES

La D.O. Montilla-Moriles, situada en el sur de la provincia de Córdoba, corresponde a una de las zonas de mayor interés dentro de la vitivinicultura andaluza. Las formaciones de suelos

Preliminary characterisation of mannoproteins from different wine yeast strains and impact on wine properties

Mannoproteins (MPs) are released from the yeast cell wall during alcoholic fermentation and aging on the lees, and influence aspects of wine quality such as haze formation and colour stability. Yet, as this is a slow process with microbiological and sensory risks, the exogenous addition of extracted MPs poses an efficient alternative. While Saccharomyces cerevisiae has long been studied as a prominent source for MPs extraction, their structure and composition greatly differ between yeast species. This may influence their behaviour in the wine matrix and subsequent impact on wine properties. However, although wine yeast species other than S. cerevisiae possibly present an untapped source of MPs, they are still ill-characterised in terms of chemical composition and influence on wine.

Combination of NIR multispectral information acquired from a ground moving vehicle with AI methods to assess the vine water status in a Tempranillo (Vitis vinifera L.) commercial vineyard

Increasing water scarcity and unpredictable rainfall patterns necessitate efficient water management in grape production. This study proposes a novel approach for monitoring grapevine water status in a commercial vertically-shoot-positioned Vitis vinifera L. Tempranillo vineyard using non-invasive spectroscopy with a battery of different AI methods to assess vineyard water status, that could drive precise irrigation. A contactless, miniature NIR spectrometer (900-1900 nm) mounted on a moving vehicle (3 Km/h) was employed to collect spectral data from the vines’ northeast side along six dates in season 2021.

Elicitors used as a tool to increase stilbenes in grapes and wines

The economic importance of grapevine as a crop plant makes Vitis vinífera a good model system to study the improvement of the nutraceutical properties of food products (Vezulli et al. 2007). Stilbenes in general, and trans-resveratrol in particular, have been reported to be responsible for various beneficial effects. Resveratrol´s biological properties include antibacteria and antifungal effects, as well as cardioprotective, neuroprotective and anticâncer actions (Guerrero et al. 2010 ). Stilbenes can be induced by biotic and abiotic elicitors since they are phytoalexins (Bavaresco et al. 2001).