WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 4 - WAC - Oral presentations 9 Epigenetic Modulation Of Inflammation And Synaptic Plasticity By Polyphenolic Metabolites Promotes Resilience Against Stress In Mice

Epigenetic Modulation Of Inflammation And Synaptic Plasticity By Polyphenolic Metabolites Promotes Resilience Against Stress In Mice

Abstract

Introduction: Major depressive disorder is associated with abnormalities in the brain and the immune system. Chronic stress in animals showed that epigenetic and inflammatory mechanisms play important roles in mediating resilience and susceptibility to depression.

Material & Methods: Here, through a high- throughput screening, we identify two phytochemicals, dihydrocaffeic acid (DHCA) and malvidin-3′-O-glucoside (Mal-gluc) that are effective in promoting resilience against stress by modulating brain synaptic plasticity and peripheral inflammation. DHCA/Mal-gluc also significantly reduces depression-like phenotypes in a mouse model of increased systemic inflammation induced by transplantation of hematopoietic progenitor cells from stress- susceptible mice.
Results: DHCA reduces pro-inflammatory interleukin 6 (IL-6) generations by inhibiting DNA methylation at the CpG-rich IL-6 sequences introns 1 and 3, while Mal-gluc modulates synaptic plasticity by increasing histone acetylation of the regulatory sequences of the Rac1 gene.

Conclusions:

This study suggests that polyphenolic metabolites capable of influencing peripheral inflammation and synaptic maladaptation may eventually be implemented as novel therapeutic interventions for promotion of mental health.

References

  1. Wang J, Gong B, Zhao W, Tang C, Varghese M, Nguyen T, Bi W, Bilski A, Begum S, Vempati P, Knable L, Ho L, Pasinetti GM. Epigenetic mechanisms linking diabetes and synaptic impairments. Diabetes 63(2):645-54 (2014).
  2. Herman F, Pasinetti GM. Principles of Inflammasome Priming and Inhibition: Implications for Psychiatric Disorders. Brain Behavior and Immunity DOI: 10.1016/j.bbi.2018.06.010 (2018).
  3. Herman F, Simkovic S, Pasinetti GM. The Neuroimmune Nexus of Depression and Dementia: Mechanisms and Targets. The British Journal of Pharmacology DOI: 10.1111/bph.14569 (2019).

DOI:

Publication date: June 14, 2022

Issue: WAC 2022

Type: Article

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

LIFE Climawin: impacts, risks and opportunities in the transition to sustainable viticulture

The LIFE Climawin project drives the sustainable transformation of the wine sector in response to climate change through the implementation of an innovative management model applied at the demonstrative winery, Bosque de Matasnos.

“Zonation”: interpretation and estimation of “Great zonation” (GZ) following the base methodology of “GRANDE FILIERA” (GF) (Great chain)

Dans des travaux précédents sur le zonage, on a traité de la « Grande Filière », du « terroir », du « territoire », de la «″Terra »″ (« Terre »”), des « Petits zonages ou sub-zonages », du « Grand Zonage », de la qualité (nous en avons classifié plus de quatre-vingt-dix), des « Grands Objectifs » (GO) de l’activité vitivinicole et des moyens utilisés pour les atteindre. Dans le « GRAND ZONAGE » (GZ) nous avons précisé que pour zoner, nous partons des aspects

Classification of “Valpolicella Superiore” wines in relation to aromatic composition: influence of geographical origin, vintage and aging

The Valpolicella appellation, mainly known for Amarone and Ripasso, is experiencing growing interest in Valpolicella Superiore (VS), a lighter red wine aligning with consumer demand. However, anecdotal evidence suggests different stylistic interpretations of VS, potentially causing consumer confusion.

Contribution of phenolic compounds to the total antioxidant capacity of Pinotage wine

The South African wine industry is taking an interest in the enhancement of red wine total antioxidant capacity (TAC) with retention of sensory quality to satisfy the demands of increasingly discerning consumers. The focus is especially on the unique South African red wine cultivar, Pinotage.

Rationalizing The Wine Nucleophilic Competition For Quinone Addition

loss and color browning which lead to wine unacceptance by consumers. These changes are mainly driven by the consumption of oxygen by polyphenols leading to the production of quinones which are oxidant compounds. Quinones can react with numerous nucleophilic compounds notably aromatic thiols, decreasing the aromatic bouquet of the wine.