IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 IVAS Session 1 - Keynote and full talk 9 Electrochemical approaches in wine analysis 

Electrochemical approaches in wine analysis 

Abstract

There is a high demand in the wine industry for analytical methods able to provide useful information to support the decision-making process in the vineyard and in the winery. Ideally these methods should be rapid (e.g. not requiring any sample preparation), cost-effective both in terms of required equipment and cost of analyses, and easy to implement. 

 

 

Electroanalytical methods have been successfully applied to the analysis of wine antioxidants, in particular phenolic compounds. However, until recently, their application was restricted to research laboratory settings, due to the complexity of the analytical set up and procedures. The recent advances in the development of portable equipment and screen-printed disposable sensors have provided interesting opportunities to adapt this technique to the winery environment.  

 

 

This lecture will cover different electroanalytical approaches of potential interest for the wine industry, with particular emphasis on voltammetric methods and their application to the monitoring of winery-relevant processes and parameters as well as for wine grade classification and varietal characterization. Additional possibilities will also be explored, in particular those related to the rapid classification of enological products such as commercial tannins or oak derivatives. Along with highlighting the benefits and drawbacks of the techniques presented, novel integrated approaches will be discussed. In particular, the combined use of advanced multivariate data analysis and artificial intelligence can unlock the capabilities of voltametric methods in the development of approaches of predictive enology. Among these, the possibility to develop tools for wine shelf-life prediction will be discussed

DOI:

Publication date: June 22, 2022

Issue: IVAS 2022

Type: Article

Authors

Maurizio Ugliano¹*

¹Dept. of Biotechnology, University of Verona

Contact the author

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Caracterización de las tierras de viña de Navarra

Este programa se enmarca dentro de las líneas de trabajo del Departamento de Agricultura, Ganadería y Alimentación del Gobiemo de Navarra y su objetivo general es conocer adecuadamente las

Identification of key-odorants in Sauternes Wines

The aim of the present work was to investigate Sauternes wines aromas. The flavor profiles of two wines (vintages 2002 and 2003) were investigated. Key-odorants have been determined by AEDA applied to Amberlite XAD-2 resin extracts. Various complementary techniques were used to identify the compounds (pHMB extraction, chemical synthesis of non-commercial standards, co-injections on two capillary columns, odor description at the sniffing port, GC-MS and GC-PFPD).

Unveiling the fungal diversity of Falanghina grapes and the role of autochthonous Saccharomyces and non-Saccharomyces yeasts in wine fermentation

Falanghina, a typical wine from the Sannio (Campania region, Italy), hosts a complex fungal microbiota that significantly influences both fermentation dynamics and sensory characteristics.

WHITE WINES OXIDATIVE STABILITY: A 2-VINTAGE STUDY OF CHARDONNAY CHAMPAGNE BASE WINES AGED ON LEES IN BARRELS

Ultra-premium champagne wines are characterized by a long stay on laths. The goal of the winemaker is to use all possible oenological techniques to keep the aromatic freshness of the future products. To that purpose, some champagne base wines can be aged on lees in oak barrels. However, if it is now acknowledged that such ageing practices contribute to the oxidative stability of dry white wines, no study has been done on Chardonnay champagne base wines designed for a long ageing on laths [1].

Leaf elemental composition in a replicated hybrid grape progeny grown in distinct climates

The elemental composition (the ionome) of grape leaves is an important indicator of nutritional
health, but its genetic architecture has received limited scientific attention. In this study, we
analyzed the leaf ionome of 131 interspecific F1 hybrid progeny from a Vitis rupestris (♀) X Vitis
riparia (♂) cross. The progeny were replicated in New York, South Dakota, Southwest Missouri ad Central Missouri, and the concentration of 20 elements were measured in their leaves at
three different phenological stages during the growing season. In leaves collected at the apical node at anthesis, elemental concentrations correlated in a consistent manner (p < 0.05) across all four geographic locations. In subsequent phenological stages, elemental ratios in the apical-node leaves remained consistent across the South Dakota and New York sites, but not across the Missouri sites. In leaves collected at the basal and middle nodes, correlations varied greatly across all locations.