terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Drought responses of grapevine cultivars under different environments

Drought responses of grapevine cultivars under different environments

Abstract

Using grapevine genetic diversity is one of the strategies to adapt viticulture to climate change. In this sense, assessing the plasticity of cultivars in their responses to environmental conditions is essential. For this purpose, the drought tolerance of Grenache, Tempranillo and Semillon cultivars grafted onto SO4 was evaluated at two experimental vineyards, one located in Valencia (Spain) and the other in Bordeaux (France). This was done by assessing gas exchange parameters, water relations and leaf hydraulic traits at the end of the season. On the one hand, inter-cultivar differences in those traits were confirmed, besides being fairly consistent between environments. On the other hand, for similar pre-dawn water potential among cultivars and environments, midday water potentials and gas exchange rates were lower in Valencia than in Bordeaux. This seems to be related to the higher vapor pressure deficit values in the former, even though leaf turgor loss point was 1 MPa lower in Valencia leaves than in Bordeaux. The leaves of the cultivars from the vineyard in Valencia showed a lower stomatal density and higher modulus of elasticity than their counterparts in Bordeaux. Moreover, both, leaf gas exchange rates and carbon isotope discrimination in grapes revealed that water use efficiency was higher in Valencia than in Bordeaux. Overall, differences among cultivars were milder than across environments, highlighting the high phenotypic plasticity of grapevine cultivars. This points to the importance of plant acclimatization processes in their responses to drought.

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

I. Buesa1,2 *, J.G. Pérez-Pérez3, S. Dayer1, M. Gowdy1, J.M. Escalona2, C. Chirivella4, D.S. Intrigliolo5 and G. Gambetta1

1 EGFV, Bordeaux Sciences Agro, INRAE, Université de Bordeaux, ISVV, F-33882, Bordeaux (France).
2 Grupo de investigación de Biología de las Plantas en Condiciones Mediterráneas-Universidad de las Islas Baleares (PlantMed-UIB), Cra. de Valldemossa, km 7.5, 07122, Palma (Spain).
3 Instituto Valenciano de Investigaciones Agrarias, Centro para el Desarrollo Agricultura Sostenible, 46113, Moncada, Valencia (Spain).
4 Instituto Tecnológico de Viticultura y Enología, Servicio de Producción Ecológica, Innovación y Tecnología, Requena, Valencia (Spain).
5 CSIC, Departamento de Ecología y Cambio Global, Centro de Investigación sobre Desertificación (CSIC-UV-GV), Carretera CV‑315, km 10.7, 46113, Moncada, Valencia (Spain).

Contact the author*

Keywords

carbon isotope ratio, leaf gas exchange, hydraulic traits, phenotypic plasticity, water relations

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Nitrogen forms and Iron deficiency: how do Grapevine rootstocks responses change?

Grapevine rootstocks provide protection against environmental biotic and abiotic stresses. Nitrogen (N) and iron (Fe) are growth-limiting factors in many crop plants due to their effects on the chlorophyll and photosynthetic characteristics. Iron nutrition of plants can be significantly affected by different nitrogen forms through altering the uptake ratio of cations and anions, and changing rhizosphere pH. The aim of this study was to investigate the response mechanisms of grapevine rootstocks due to the interaction between different nitrogen forms and iron uptake.

Perception, liking and emotional response of tropical fruit aromas in Chardonnay wines

Tropical fruit aromas in wines are thought to be important to wine consumers, although there is little research to confirm this statement. With so many wine styles available, it has become important to understand the qualities that are desirable to consumers and how to achieve those qualities. Thiols and esters are compounds that have been found to cause tropical fruit aromas in chardonnay (ref). Fermentation temperature gradients and skin contact were found to increase these compounds using micro scale fermentations. This work aimed to scale up these fermentations/operations to determine if the desired tropical fruit aromas could still be achieved and if there is a perceivable difference in tropical fruit aromas, liking, and emotional response in the wines at the consumer level.

Effects of progeny in the modulation of the response to water stress in isohydric and anisohydric varieties

Each grapevine variety has a specific water use regulation response under drought, and it is still unclear whether this regulation results from innate genotypic behavior (iso- and anisohydric), or is a response to environmental factors, namely recurrent water stress priming effects. In the present work, we explored the influence of the field-grown genotypes’ drought memory in the drought-response phenotype of their vegetative progenies, in Trincadeira (isohydric) and Castelão (anisohydric) varieties under a drought event followed by recovery in a glasshouse. Cuttings from both cultivars subjected to full irrigation (FI) and non-irrigation (NI) treatments for 5 consecutive years were used.

Performance of Selected Uruguayan Native Yeasts for Tannat Wine Production at Pilot Scale

The wine industry is increasing the demand for indigenous yeasts adapted to the terroir to produce unique wines that reflect the distinctive characteristics of each region. In our group, we have identified and characterized 60 native yeast strains isolated from a vineyard in Maldonado-Uruguay, in which three strains stood out: Saccharomyces cerevisiae T193FS, Saturnispora diversa T191FS, and Starmerella bacillaris T193MS. Their oenological potential was evaluated at a semi-pilot scale in Tannat must vinification in the wine cellar to have a more precise and representative evaluation of the final product.

Quantification of polysaccharides of variety Pomaces of the D.O.Ca Rioja

Pomace is one of the main residues generated by the wine industry and represents an environmental problem. Currently, there is a growing interest in the revaluation of these products because different bioactive compounds can be obtained from them, such as polyphenols, grape seed oils and polysaccharides. Red grape pomace can be an important source of polysaccharides, but they are currently little studied and even less with viable and environmental extraction processes (green extraction), such as flash extraction. The residual amount of the fraction rich in pectin (residual pulp) and component rich in hemicellulose in the pomace and the strength of association of the pectin with the cellulose-xyloglucan network depend on the degree of extractability of the polysaccharides in red winemaking and on the winemaking conditions.