terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Drought responses of grapevine cultivars under different environments

Drought responses of grapevine cultivars under different environments

Abstract

Using grapevine genetic diversity is one of the strategies to adapt viticulture to climate change. In this sense, assessing the plasticity of cultivars in their responses to environmental conditions is essential. For this purpose, the drought tolerance of Grenache, Tempranillo and Semillon cultivars grafted onto SO4 was evaluated at two experimental vineyards, one located in Valencia (Spain) and the other in Bordeaux (France). This was done by assessing gas exchange parameters, water relations and leaf hydraulic traits at the end of the season. On the one hand, inter-cultivar differences in those traits were confirmed, besides being fairly consistent between environments. On the other hand, for similar pre-dawn water potential among cultivars and environments, midday water potentials and gas exchange rates were lower in Valencia than in Bordeaux. This seems to be related to the higher vapor pressure deficit values in the former, even though leaf turgor loss point was 1 MPa lower in Valencia leaves than in Bordeaux. The leaves of the cultivars from the vineyard in Valencia showed a lower stomatal density and higher modulus of elasticity than their counterparts in Bordeaux. Moreover, both, leaf gas exchange rates and carbon isotope discrimination in grapes revealed that water use efficiency was higher in Valencia than in Bordeaux. Overall, differences among cultivars were milder than across environments, highlighting the high phenotypic plasticity of grapevine cultivars. This points to the importance of plant acclimatization processes in their responses to drought.

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

I. Buesa1,2 *, J.G. Pérez-Pérez3, S. Dayer1, M. Gowdy1, J.M. Escalona2, C. Chirivella4, D.S. Intrigliolo5 and G. Gambetta1

1 EGFV, Bordeaux Sciences Agro, INRAE, Université de Bordeaux, ISVV, F-33882, Bordeaux (France).
2 Grupo de investigación de Biología de las Plantas en Condiciones Mediterráneas-Universidad de las Islas Baleares (PlantMed-UIB), Cra. de Valldemossa, km 7.5, 07122, Palma (Spain).
3 Instituto Valenciano de Investigaciones Agrarias, Centro para el Desarrollo Agricultura Sostenible, 46113, Moncada, Valencia (Spain).
4 Instituto Tecnológico de Viticultura y Enología, Servicio de Producción Ecológica, Innovación y Tecnología, Requena, Valencia (Spain).
5 CSIC, Departamento de Ecología y Cambio Global, Centro de Investigación sobre Desertificación (CSIC-UV-GV), Carretera CV‑315, km 10.7, 46113, Moncada, Valencia (Spain).

Contact the author*

Keywords

carbon isotope ratio, leaf gas exchange, hydraulic traits, phenotypic plasticity, water relations

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Culturable microbial communities associated with the grapevine soil in vineyards of La Rioja, Spain

The definition of soil health is complex due to the lack of agreement on adequate indicators and to the high variability of global soils. Nevertheless, it has been widely used as synonymous of soil quality for more than one decade, and there is a consensus warning of scientists that soil quality and biodiversity loss are occurring due to the traditional intensive agricultural practices.
In this work we monitored a set of soil parameters, both physicochemical and microbiological, in an experimental vineyard under three different management and land use systems: a) addition of external organic matter (EOM) to tilled soil; b) no tillage and plant cover between grapevine rows, and c) grapevines planted in rows running down the slope and tilled soil.

Influence of irrigation frequency on berry phenolic composition of red grape varieties cultivated in four spanish wine-growing regions

The global warming phenomenon involves the frequency of extreme meteorological events accompanied by a change in rainfall distribution. Irrigation frequency (IF) affects the spatial and temporal soil water distribution but its effects on the phenolic composition of the grape have been scarcely studied. The aim of this work was to evaluate the effects of four deficit irrigation frequencies of 30 % ETo: one irrigation per day (T01), two irrigations per week (T03), one irrigation per week (T07) and one irrigation every two weeks (T15) on berry phenolic composition at harvest.

Polyphenol content of cork granulates at different steps of the manufacturing process of microagglomerated stoppers treated with supercritical CO2 used for wine bottling

The wine closure industry is mainly divided into three categories: screw caps, synthetic closures, and cork-based closures. Among this latter, microagglomerated cork stoppers treated with supercritical CO2 are now widely used, especially to avoid cork taint contaminations[1]. They are designed with cork granules obtained from cork offcuts of the punching process during the natural cork stoppers production. A previous study[2] showed that these stoppers released fewer polyphenols in 12 % (v/v) hydroalcoholic solution than natural cork stoppers.

Plastic debris at vines: carriers of pollutants in the environment?

Modern agriculture employs large amounts of plastics, such as mulching and greenhouse films, thermal covers, plant protection tubes and tying tape. The latter two types are very common in viticulture. Guard tubes are employed to protect young vines from mechanic and atmospheric damage, whilst polymeric tying tape has replaced natural-origin materials to hold the canopy of vines. Both materials are made on synthetic polymers, which include a range of additives to improve their environmental stability remaining in the environment of vineyards for years. During this time, they are exposed to the range of pesticides (fungicides, insecticides and in a lesser extend herbicides) applied to vines.

Exploring relationships among grapevine chemical and physiological parameters and mycobiome composition under drought stress

Improving our knowledge on biotic and abiotic factors that influence the composition of the grapevine mycobiome is of great agricultural significance, due to potential effects on plant health, productivity, and wine characteristics. Among the various environmental factors affecting the morphological, physiological, biochemical and molecular attributes of grapevine, drought stress is one of the most severe, becoming increasingly an issue worldwide.