IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 An Ag+ SPE method combined with Deans’ switch heart-cutting MDGC–MS/Olfactometry approach for identifying unknown volatile thiols in wine

An Ag+ SPE method combined with Deans’ switch heart-cutting MDGC–MS/Olfactometry approach for identifying unknown volatile thiols in wine

Abstract

Wine aroma is a crucial quality criterion. A multitude of volatile compounds have been identified and correlated to the aroma attributes perceived in wine. Volatile thiols are a category of volatile sulfur compounds that are well-recognized as potent aroma-impacting odorants contributing to various aroma attributes of many wines because of their low odor detection thresholds (ng/L). However, volatile thiols are highly reactive and generally present at ultra-trace concentrations (ng/L) in wines, causing major analytical difficulties. For more than two decades, the identifications of new volatile thiols were nearly exclusively achieved by the use of organomercuric compounds for thiol extraction, followed by conventional gas chromatography and mass spectrometry/olfactometry (GC–MS/O) for chromatographic separation, odorous zone profiling, and MS detection. However, such analytical protocols required the use of highly toxic organomercuric chemicals and are often laborious. Meanwhile, olfactometry data of other unknown thiol odorous zones has been reported but their identities were not pursued.
This work focused on the aroma of premium red wines and aimed to identify unknown volatile thiols. First, we developed a silver ion solid-phase extraction (Ag+ SPE) method for thiol isolation. Ag+ SPE cartridge selectivity, cartridge wettability, reservoir material, and elution reagent were evaluated. The developed Ag+ SPE method was safe, simple, scalable, selective, and artefact resistant, suitable for qualitative identification tasks. Low thermal mass (LTM) Deans’ switch (DS) heart-cutting multidimensional GC–MS/O (H/C MDGC–MS/O) was optimized for its performance using three model volatile thiol analytes. Significant impacts of instrument parameters including main host oven temperature, H/C width, and cryogenic trapping on the separation and detection were observed. Main host oven at high temperature was required to maintain flow balance for H/C operation. Narrow H/C width was selected to avoid irregular chromatographic behavior. Cryogenic trapping at the optimal temperature was needed to effectively capture the H/C effluent at the inlet of second column and to significantly enhance peak detection. The development of the Ag+ SPE H/C MDGC–MS/O protocol was applied to screen a selection of several premium Bordeaux red wines presenting a bouquet with intense empyreumatic nuances. In selected wines, a number of odorous zones with such aroma descriptors were characterized. Supported by olfactometric results, retention data, and corresponding mass spectra, the identification of odorous thiols that were not previously reported in wine was described. The identification of unknown thiols expands our understanding of the volatile molecular markers contributing to the aroma quality of premium wines

DOI:

Publication date: June 22, 2022

Issue: IVAS 2022

Type: Article

Authors

Chen Liang¹* and Darriet Philippe¹

¹Univ. Bordeaux, INRAE, Bordeaux INP, UMR1366 Œnologie, ISVV, F-33140 Villenave d’Ornon, France

Contact the author

Keywords

red wine, aroma, volatile thiols, extraction, identification

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Bioprotective effect of a Torulaspora delbrueckii/Lachancea thermotolerans mixed inoculum and its impact on wines made.

SO2 is an additive widely used as antimicrobial in winemaking industry. However, this compound can negatively affect health, so the search for alternatives is currently a line of research of great interest. One of the proposed alternatives to SO2 as an antimicrobial is the use of bioprotection yeasts, which colonize the medium preventing the proliferation of undesirable microorganisms.

Combined high-resolution chromatography techniques and sensory analysis as a support decision system tool for the oenologist

One of the main challenges in the wine industry is to understand how different wine processing techniques and practices can influence the overall quality of the final product.

Prosensorial potential of new fungi-resistant varieties in modern oenology

The introduction into the Italian wine supply chain of the latest generation of fungi-resistant grapevine varieties, endowed with a greater or lesser strong resistance to downy and powdery mildews, represents a valid tool of making viticulture more sustainable, particularly in northern regions of the peninsula, where climatic conditions accentuate the pressure of fungal diseases. However, the affirmation of resistant varieties is a function of their agronomic value, as well as of their oenological and sensorial value. The purpose of this study was to evaluate in detail the sensory potential of the new resistant varieties, in order to understand their real possibility of inclusion in the modern global enological context.

Prise en compte et mutations de l’acidité volatile au XXe siècle : les évolutions règlementaires, scientifiques et qualitatives d’un composé du vin au regard de l’histoire

Les composés actifs du vin ont, jusqu’ici, peu fait l’objet d’études sur le temps long. Le développement de l’œnologie, de l’analyse des vins et, de manière concomitante, l’essor des règlementations vinicoles au XXe siècle révèlent pourtant au grand jour le poids de ces composés et leurs évolutions. Dans cette communication, nous souhaitons montrer comment l’acidité volatile des vins,

A GIS Analysis of New Zealand Terroir

This paper summarises a national survey of the geological setting of vineyards in New Zealand. We also provide an overview of climate, slope, aspect and varietals planted in New Zealand vineyards as a whole and for some individual regions.