IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 An Ag+ SPE method combined with Deans’ switch heart-cutting MDGC–MS/Olfactometry approach for identifying unknown volatile thiols in wine

An Ag+ SPE method combined with Deans’ switch heart-cutting MDGC–MS/Olfactometry approach for identifying unknown volatile thiols in wine

Abstract

Wine aroma is a crucial quality criterion. A multitude of volatile compounds have been identified and correlated to the aroma attributes perceived in wine. Volatile thiols are a category of volatile sulfur compounds that are well-recognized as potent aroma-impacting odorants contributing to various aroma attributes of many wines because of their low odor detection thresholds (ng/L). However, volatile thiols are highly reactive and generally present at ultra-trace concentrations (ng/L) in wines, causing major analytical difficulties. For more than two decades, the identifications of new volatile thiols were nearly exclusively achieved by the use of organomercuric compounds for thiol extraction, followed by conventional gas chromatography and mass spectrometry/olfactometry (GC–MS/O) for chromatographic separation, odorous zone profiling, and MS detection. However, such analytical protocols required the use of highly toxic organomercuric chemicals and are often laborious. Meanwhile, olfactometry data of other unknown thiol odorous zones has been reported but their identities were not pursued.
This work focused on the aroma of premium red wines and aimed to identify unknown volatile thiols. First, we developed a silver ion solid-phase extraction (Ag+ SPE) method for thiol isolation. Ag+ SPE cartridge selectivity, cartridge wettability, reservoir material, and elution reagent were evaluated. The developed Ag+ SPE method was safe, simple, scalable, selective, and artefact resistant, suitable for qualitative identification tasks. Low thermal mass (LTM) Deans’ switch (DS) heart-cutting multidimensional GC–MS/O (H/C MDGC–MS/O) was optimized for its performance using three model volatile thiol analytes. Significant impacts of instrument parameters including main host oven temperature, H/C width, and cryogenic trapping on the separation and detection were observed. Main host oven at high temperature was required to maintain flow balance for H/C operation. Narrow H/C width was selected to avoid irregular chromatographic behavior. Cryogenic trapping at the optimal temperature was needed to effectively capture the H/C effluent at the inlet of second column and to significantly enhance peak detection. The development of the Ag+ SPE H/C MDGC–MS/O protocol was applied to screen a selection of several premium Bordeaux red wines presenting a bouquet with intense empyreumatic nuances. In selected wines, a number of odorous zones with such aroma descriptors were characterized. Supported by olfactometric results, retention data, and corresponding mass spectra, the identification of odorous thiols that were not previously reported in wine was described. The identification of unknown thiols expands our understanding of the volatile molecular markers contributing to the aroma quality of premium wines

DOI:

Publication date: June 22, 2022

Issue: IVAS 2022

Type: Article

Authors

Chen Liang¹* and Darriet Philippe¹

¹Univ. Bordeaux, INRAE, Bordeaux INP, UMR1366 Œnologie, ISVV, F-33140 Villenave d’Ornon, France

Contact the author

Keywords

red wine, aroma, volatile thiols, extraction, identification

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Effect of spray with autochthonous Trichoderma strains and its secondary metabolites on the quality of Tempranillo grape

Trichoderma is one of the most widely used fungal biocontrol agents on vineyards due to its multiple benefits on this crop, such as its fungicidal and growth promoting capacity. In this work, we have analyzed the effect on the concentration of nutrients in grapevine leaves and on the quality of the grape must after spraying an autochthonous strain of Trichoderma harzianum and one of the main secondary metabolites produced by this genus, 6-pentyl-α-pyrone (6PP).

Assessing macro-elements contents in vine leaves and grape berries of Vitis vinifera using near-infrared spectroscopy coupled with chemometrics

The cultivated vine (Vitis vinifera) is the main species cultivated in the world to make wine. In 2017, the world wine market represents 29 billion euros in exports, and France contributes 8.2 billion (28%) to this trade, making it a traditional market of strategic importance. Viticulture is therefore a key sector of the French agricultural economy. It is in this context that the nutritional diagnosis of the vine is of real strategic interest to winegrowers. Indeed, the fertilization of the vine is a tool for the winegrower that allows him to influence and regulate the quality of the wine.

Closure permeability: a key parameter for modulating the aroma of monovarietal white wines during bottle ageing

Bottle aging is crucial for wine quality, influencing its chemical and sensory properties [1]. Ideally, a phase of qualitative ageing enhances sensory attributes before a decline in quality occurs. Understanding the impact of oenological variables on these phases is a key challenge in modern winemaking.

Biodiversity and biocontrol ability of Trichoderma natural populations in soil vineyards from Castilla y León region (Spain)

Trichoderma is a microorganism present in many agricultural soils and some of its species could be used as natural biological control agents. In this work, the presence of natural populations of Trichoderma was estimated in soil vineyard and its biocontrol capacity against Phaeoacremonium minimum, one of the main agent causals of grapevine trunk diseases instead of using pesticides. Moreover, physicochemical variables in soil such as pH, organic matter and nutrients were evaluated to determine a possible correlation to natural populations of Trichoderma.

Use of uv light for suppression of grapevine diseases

Microbial pathogens of plant have evolved to sense, interpret, and use light to direct their development. One aspect of this evolved relationship is photolyase-mediated repair of UV-induced damage to pathogen DNA. Application of germicidal UV (UV-C) at night circumvents the blue light-driven repair of pathogen DNA and allows non-phytotoxic doses of UV-C to suppress a variety of pathogenic microbes and even certain arthropod pests without damage to vines or fruit. Lamps arrays have been designed specifically for the canopy architecture of grapevines and have been deployed on both tractor-drawn and robotic carriages for partial to near-complete suppression of powdery mildew (Erysiphe necator), sour rot (fungal, bacterial, and arthropod complex), and downy mildew (Plasmopara viticola).