IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Hanseniaspora in wine-making: their genetic modification and potential role in acid modulation

Hanseniaspora in wine-making: their genetic modification and potential role in acid modulation

Abstract

Hanseniaspora spp. are one of the most common yeast isolates in vineyards and wineries and play an important role in wine-making.  We explored the impact of an apiculate yeast Hanseniaspora occidentalis strain as a co-partner with Saccharomyces cerevisiae in a sequential-type mixed-culture fermentation of Muscaris grape must.  Like with other fermentation trials using Hanseniaspora strains, a significant increase in ethyl acetate was observed, but most intriguing, was the almost complete abolition of malic acid in the wine.  Compared to the pure S. cerevisiae inoculum there was also a marked increase in the concentrations of the other acetate esters. Modulation of some of the varietal elements like rose oxide was also observed.  Identifying and confirming the genes involved in malic acid utilization and aroma formation would require the development of gene modification tools: a feature not existing yet in H. occidentalis. We have recently developed gene-modifying tools in Hanseniaspora uvarum where we knocked-out the two alleles of the alcohol acetyltransferase gene (HuATF) resulting in a yeast with much lower acetate ester capabilities. This was the first successful attempt to genetically remove a gene from Hanseniaspora and paves the way for further gene-to-function studies in this apiculate yeast
genus

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Van Wyk Niel¹, Badura Jennifer¹, Scansani Stefano¹,³, Pretorius Isak S.², Rauhut Doris1, Von Wallbrunn Christian¹

¹Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Geisenheim, Germany
²ARC Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney, Australia
³Institute of Applied Microbiology, Justus-Liebig-University, Giessen, Germany

Contact the author

Keywords

Hanseniaspora, GMO, malic acid

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Identification of γ-nonalactone precusor in Merlot and Cabernet-Sauvignon grapes

Wine flavor results on complexes interactions of odorous components, which come from different aromatic families like esters, thiols, aldehydes, pyrazines or lactones.

Aromatic stability of Syrah and Petit Verdot tropical wines from Brazil

The production of fine wines in the Sub-middle of the São Francisco River Valley, Northeast of Brazil, is relatively recent, about twenty-five years ago. This region presents different characteristics

Il ruolo dei comuni nella gestione del territorio e nella tutela dei vitigni autoctoni di qualita’

Questo simposio organizzato dall ‘Associazione nazionale Città del Vino, che mi onoro di presiedere, è per me motivo di particolare soddisfazione perché porta a compimento parte di un percorso iniziato dall’associazione da alcuni anni e che ha un obiettivo apparentemente semplice: sollecitare gli amministratori delle Città del Vino a perseguire con tenacia, tal­volta anche con la necessaria caparbietà, programmi ed interventi che abbiano al centro, sempre, la qualità della vita dei loro territori.

Activation of retrotransposition in grapevine

Retrotransposons, particularly of the Ty-Copia and Ty-Gypsy superfamilies, represent the most abundant and widespread transposons in many plant genomes. Grapevine is no exception and it is clear that these mobile elements have played a major role in the evolution of Vitaceae genomes. While speculation abounds around the possible role of transposons in plant genomes, outside of the rather obvious involvement of retrotransposition in fueling genome expansion, there is little clarity of the actual role these elements have in both developing new genetic variation and in modulating epigenetic responses within genomes to changing climate. To this end we have been exploring de-novo assembled Sauvignon blanc and Pinot noir genomes with a view to catalogue retrotransposon loci to determine the structural intactness and thus age of insertion variation across a small number of clonal linages of these 2 varietals in an attempt to identify ‘live’ TE loci.

Facteurs physiques et biologiques affectant la production viticole et vinicole de la région avec dénomination d’origine “Condado de Huelva” (SW d’Espagne)

Les facteurs physiques et biologiques du milieu naturel affectant la production viticole de la R.D.O. “Condado de Huelva” et quelques relations les concernant sont étudiés dans les systèmes de la production vinicole ; le bon fonctionnement du Vignoble ayant besoin par ailleurs, du concours d’autres facteurs (Reynier, 1989 ; Paneque et al., 1996, a,b).