IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Hanseniaspora in wine-making: their genetic modification and potential role in acid modulation

Hanseniaspora in wine-making: their genetic modification and potential role in acid modulation

Abstract

Hanseniaspora spp. are one of the most common yeast isolates in vineyards and wineries and play an important role in wine-making.  We explored the impact of an apiculate yeast Hanseniaspora occidentalis strain as a co-partner with Saccharomyces cerevisiae in a sequential-type mixed-culture fermentation of Muscaris grape must.  Like with other fermentation trials using Hanseniaspora strains, a significant increase in ethyl acetate was observed, but most intriguing, was the almost complete abolition of malic acid in the wine.  Compared to the pure S. cerevisiae inoculum there was also a marked increase in the concentrations of the other acetate esters. Modulation of some of the varietal elements like rose oxide was also observed.  Identifying and confirming the genes involved in malic acid utilization and aroma formation would require the development of gene modification tools: a feature not existing yet in H. occidentalis. We have recently developed gene-modifying tools in Hanseniaspora uvarum where we knocked-out the two alleles of the alcohol acetyltransferase gene (HuATF) resulting in a yeast with much lower acetate ester capabilities. This was the first successful attempt to genetically remove a gene from Hanseniaspora and paves the way for further gene-to-function studies in this apiculate yeast
genus

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Van Wyk Niel¹, Badura Jennifer¹, Scansani Stefano¹,³, Pretorius Isak S.², Rauhut Doris1, Von Wallbrunn Christian¹

¹Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Geisenheim, Germany
²ARC Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney, Australia
³Institute of Applied Microbiology, Justus-Liebig-University, Giessen, Germany

Contact the author

Keywords

Hanseniaspora, GMO, malic acid

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Inhibitory effect of sulfur dioxide, ascorbic acid and glutathione on browning caused by laccase activity

AIM: The aim of this work was to study the inhibitory effect of the three most frequently used wine antioxidants – sulfur dioxide, ascorbic acid and glutathione – on the kinetics of browning caused by Botrytis cinerea laccase using a grape juice synthetic model in which (-)-epicatechin was the substrate.

Investigating the impact of bottle color, temperature and light exposure on rose wine characteristics

Rosé is leading the fastest growth wine category which hit a 40% increase since 2002. France accounts for over a third (34%) of global consumption followed by the US

Vineyard mulching offer many benefits beyond winter protection

Grapevines are susceptible to freezing damage at temperatures below -5°F during the winter season. Preventing winter injury to grapevines is a major challenge in many grape-producing regions. Conventional methods such as hilling-up soil over graft unions have been developed as winter protection methods for preventing vine loss. However, these practices have drawbacks such as soil erosion, vine damage and crown gall development.

How to make a mineral wine? Producers’ representations vs. scientific data

In this video recording of the IVES science meeting 2023, Jordi Ballester (Centre des sciences du goût et de l’alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Franche-Comté, Dijon, France) speaks on how to make a mineral wine, producers’ representations vs. scientific data. This presentation is based on an original article accessible for free on OENO One.

The influence of site aspect and pruning types on Pinot Noir phenology and shoot growth

Aim: Managing the influence that terroir in vineyards has on vine development depends on improving our understanding the effect of the interaction of within-site variability, within-vine variability, and management practices (such as pruning types) on phenology and vine development. This study evaluates the consequence of site aspect