IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Hanseniaspora in wine-making: their genetic modification and potential role in acid modulation

Hanseniaspora in wine-making: their genetic modification and potential role in acid modulation

Abstract

Hanseniaspora spp. are one of the most common yeast isolates in vineyards and wineries and play an important role in wine-making.  We explored the impact of an apiculate yeast Hanseniaspora occidentalis strain as a co-partner with Saccharomyces cerevisiae in a sequential-type mixed-culture fermentation of Muscaris grape must.  Like with other fermentation trials using Hanseniaspora strains, a significant increase in ethyl acetate was observed, but most intriguing, was the almost complete abolition of malic acid in the wine.  Compared to the pure S. cerevisiae inoculum there was also a marked increase in the concentrations of the other acetate esters. Modulation of some of the varietal elements like rose oxide was also observed.  Identifying and confirming the genes involved in malic acid utilization and aroma formation would require the development of gene modification tools: a feature not existing yet in H. occidentalis. We have recently developed gene-modifying tools in Hanseniaspora uvarum where we knocked-out the two alleles of the alcohol acetyltransferase gene (HuATF) resulting in a yeast with much lower acetate ester capabilities. This was the first successful attempt to genetically remove a gene from Hanseniaspora and paves the way for further gene-to-function studies in this apiculate yeast
genus

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Van Wyk Niel¹, Badura Jennifer¹, Scansani Stefano¹,³, Pretorius Isak S.², Rauhut Doris1, Von Wallbrunn Christian¹

¹Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Geisenheim, Germany
²ARC Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney, Australia
³Institute of Applied Microbiology, Justus-Liebig-University, Giessen, Germany

Contact the author

Keywords

Hanseniaspora, GMO, malic acid

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Trends and challenges in International Wine Trade. The need for new strategies for companies and regions.

Trends already extended for more than 12 years show a decline in both consumption and international trade, particularly in volume. However, there are also positive signs in several categories of wine, segments and markets, as well as a better trend in terms of value. How are these trends affecting wine producers and distributors? Are they short or long term? do they mean radical and permanent changes to which a way of adaptation has to be found or are they just temporary changes that may only require some calm? How are companies adapting to these new trends? Which are their effects on wine regions?

1H NMR spectroscopy data to discriminate Petit verdot wines from three different soil types in the São Francisco valley, Brazil

Tropical wines have been produced in the São Francisco river Valley thirty years ago, in the Northeast of Brazil. The main grape cultivar used for red tropical wines is ‘Syrah’, but wines have presented fast evolution, if they were made in the first or second semester, due to the high values of pH in grapes and wines and high climate temperatures.

The effects of cover cropping systems on vine physiology, berry and wine quality in a climate change scenario in Switzerland

Sustainable weed control with little detrimental effects on vine physiology, yield, berry quality, soil structure, health and biodiversity is a key factor in vineyard management. Few options are available to avoid herbicide utilization and minimize negative effects of frequent tillage on soil quality. The present project aims to investigate and develop different cover management strategies in a cool climate viticultural region in Switzerland. The impact of different treatments on vine, must and wine has been studied in an experimental vineyard in Changins, Switzerland for one year and will be continued over the next three years.

WINE LEES AS A SOURCE OF NITROGEN FOR OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION PERFORMANCE

Malolactic fermentation (MLF) is a desired process in red and acidic white wines, after alcoholic fermentation (AF), carried out by the lactic acid bacterium (LAB) Oenococcus oeni. The advantages are an increase of pH, microbiological stabilization and organoleptic improvement of the final wine. However, the presence of stress factors such as ethanol, low pH, high total SO2, lack of nutrients and presence of inhibitors, could affect the successful completion of MLF [1]. Changes in amino acid composition and deficiencies in peptides after AF, showed that MLF can be delayed, signaling its importance for bacterial growth and L-malic acid degradation during MLF [2].

Fresh odorous terpenoids in wines, multiples pathways of limonene degradation.

Mint aromas in wine, which manifest as “cool” or “fresh” character, can originate from different chemical classes, one of which is the terpenoids. A broadly diverse, naturally occurring class of chemical compounds, terpenes possess wide applications across multiple industries due to their pharmaceutical, antiseptic, medical, and aromatic properties. Monoterpenes, a subclass of terpenoids, likewise play a major role in wine sensory perception. Within the monoterpenes, those possessing “mint” odor qualities have often been studied in the context of “vegetal” or “herbal” wine faults; however, their role in positive aromatic evolution is less understood. Yet an extensive 2015 study of older premium Bordeaux red wines identified mint as a contributing factor in quality bouquet development. From that point, it was necessary to investigate the origins of those monoterpenes as well as the chemical conditions required for their development during ageing. Those two key points could finally facilitate predicting the apparition of minty character in older wines based on their composition while young.
A principal contributor is the cyclic monoterpene limonene, which was isolated relatively early in grapes and wine. Not only does limonene itself possess a cool, fresh odor, it is also a precursor for, and possible derivative of, additional mint monoterpenes. Among the most commonly found monoterpenes, limonene and its derivatives can constitute the majority of the essential oils of citrus fruits, mint and herb plants, and coniferous trees. Many of these mint monoterpenes also occur in grapes and wine. With aromas ranging from woody and earthy to citrus to mint and herbaceous, their contribution to wine is potentially diverse and multi-faceted. While sometimes, found at concentrations below the sensory threshold, synergistic effects between these molecules could render them perceivable.
This review looks at limonene and its transformation as studied in different matrices, and potential parallels or analogues in wine. Moreover, within the complex kinetics of wine aging, the relative concentrations of mint monoterpenes appears to continue to evolve and change, with additional evidence from model wine solutions suggesting they may even revert to their originating precursors. Continued study of mint monoterpenes and their role in wine aromatics will contribute to a deeper understanding of the development of aging bouquet and the longevity of premium wines.