IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Unravelling the microbial community structure and aroma profile of Agiorgitiko wine under different inoculation schemes

Unravelling the microbial community structure and aroma profile of Agiorgitiko wine under different inoculation schemes

Abstract

Agiorgitiko (Vitis vinifera L. cv.) is the most widely cultivated indigenous red grape variety in Greece, known for the production of Protected Designation of Origin Nemea wines. The aim of the present study was to evaluate five different combinations of yeast starters, previously isolated from spontaneous alcoholic fermentation of the same grape variety, for their oenological potential in terms of fermentation predominance and capacity as well as aromatic contribution to Agiorgitiko wine production. Grapes from the Nemea region, crashed and pressed, were inoculated with different yeast species/strains in pure and mixed cultures.  In particular, wines were produced in duplicate with the addition of (A) Saccharomyces cerevisiae SFA1, (B) S. cerevisiae SFA2, (C) S. cerevisiae SFA3, (D) S. cerevisiae SFA3, Hanseniaspora opuntiae SFB1 and (E) S. cerevisiae SFA3, H. opuntiae SFB1, H. opuntiae SFB2 and Hanseniaspora uvarum SFC1. At specific time points during the alcoholic fermentation, amplicon-based metagenomics analysis was employed to unravel the microbial community structure at the genus level. In the end of the fermentation process oenological parameters including volatile acidity, residual sugars and ethanol were determined according to the OIV protocols while the volatile compounds produced were measured by GC/MS. Finally, all produced wines were evaluated  by quantitative descriptive analysis. As expected, Saccharomyces dominated the yeast/fungal microbiota of the A-C wine samples throughout fermentation, followed by Aspergillus, Cladosporium and Aureobasidium, mainly at the early fermentation stage. In D and E wine samples, although Hanseniaspora was the predominant genus in early fermentation, the relative abundance of Saccharomyces rapidly increased and dominated until the end of the fermentation. Compared to yeast/fungi, bacterial community was characterized by a quite higher diversity. Although similar genera were identified in all wine samples (A-E), e.g. Bacillus, Oenococcus, Lactococcus, Staphylococcus and Acinetobacter, their relative abundances varied depending on the sample and fermentation stage. As far as the volatile profile was concerned, the GC/MS analysis revealed that the use of different species/yeasts modified the flavor and aroma of the produced wines. More specifically, exceptional amounts of higher alcohols and medium-chain fatty acid esters (known for their floral and fruity contribution) were observed in the co-inoculated wines (D and E), resulting in a more distinct and intense aromas. According to sensory evaluation the co-inoculation with three different yeast species (wine sample E) significantly increased the aromatic typicity characterized by red fruits aromas. Understating the microbial community structure during the alcoholic fermentation could lead to higher quality wine product and constitute a strong tool to direct wine sensory traits

Acknowledgments

This research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call “Greece – Israel Call for Proposals for Joint R&D Projects 2019” (project code: T10ΔΙΣ-00060).

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Dimopoulou Maria¹, Kazou Maria², Drosou Fotini¹, Sellas Vassilis¹, Dourtoglu Vassilis¹ and Tsakalidou Effi²

¹Department of Wine, Vine, and Beverage Sciences, School of Food Science, University of West Attica, Athens, Greece
²Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece

Contact the author

Keywords

amplicon-based metagenomics analysis, wine aromas, regional yeast, Agiorgitiko

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Bio-acidification of wines by Lachancea thermotolerans

Insufficient acidity in grapes from warm climates/vintages is commonly corrected through addition of tartaric acid during vinification, and less so with other organic acids. An alternative approach involves bio-acidification with the yeast Lachancea thermotolerans (LT) via lactic acid production during fermentation.

Tools for terroir classification for the grape variety Kékfrankos

A 3-year study was carried out in order to evaluate the ecophysiology, yield and quality characteristics of Vitis vinifera L. cv. Kékfrankos (syn. Limberger) at Eger-Nagyeged hill (steep slope) and at Eger-Kőlyuktető (flat) vineyard sites located in the Eger wine region, Hungary.

New biotechnological approaches for a comprehensive characterization of AGL11 and its molecular mechanism underlying seedlessness trait in table grape

In table grapes seedlessness is a crucial breeding target, mainly results from stenospermocarpy, linked to the Thompson Seedless variety. Several studies investigated the genetic control of seedlessness identifying AGL11, a MADS-box transcription factor, as a crucial gene.
We performed a deep investigation of the whole AGL11 gene sequence in a collection of grapevine varieties revealing three different promoter-CDS combinations. By investigating the expression of the three AGL11 alleles and evaluating their ability to activate the promoter region, we show that AGL11 regulates its transcription in a specific promoter-CDS manner. By a multi-AGL11 co-expression analysis we identified a methyl jasmonate esterase, an indole-3-acetate beta-glucosyltransferase, and an isoflavone reductase as top AGL11 candidate targets. In vivo experiments further confirmed AGL11 role in regulating these genes, demonstrating its significant influence in seed development and thus in seedlessness trait.

Effect of post-harvest ozone treatments on the skin phenolic composition and extractability of red winegrapes cv Nebbiolo and Barbera

Wine industry is looking forward for innovative, safe and eco-friendly antimicrobial products allowing the reduction of chemical treatments in the grape defense and the winemaking process that can affect negatively the quality of the product. Ozone has been tested in food industry giving good results in preventing fungi and bacteria growth on a wide spectrum of vegetables and fruits, due to its oxidant activity and ability to attack numerous cellular constituents. Ozone leaves no chemical residues on the food surface, decomposing itself rapidly in oxygen. Gaseous ozone has been already tested for table grapes storage and on wine grapes during withering.

Aroma profile of Oenococcus oeni strains in different life styles

AIM: Three Oenococcus oeni strains previously isolated from spontaneous malolactic fermentation were characterized for their surface properties. Planktonic and sessile cells were investigated for aroma compounds production and the expression of genes involved in citrate and malate metabolism (citE and mleA, respectively), glycoside-hydrolase (dsrO), fructansucrase (levO), rhamnosyl-transferase (wobB), glycosyltransferase (wobO).