IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Unravelling the microbial community structure and aroma profile of Agiorgitiko wine under different inoculation schemes

Unravelling the microbial community structure and aroma profile of Agiorgitiko wine under different inoculation schemes

Abstract

Agiorgitiko (Vitis vinifera L. cv.) is the most widely cultivated indigenous red grape variety in Greece, known for the production of Protected Designation of Origin Nemea wines. The aim of the present study was to evaluate five different combinations of yeast starters, previously isolated from spontaneous alcoholic fermentation of the same grape variety, for their oenological potential in terms of fermentation predominance and capacity as well as aromatic contribution to Agiorgitiko wine production. Grapes from the Nemea region, crashed and pressed, were inoculated with different yeast species/strains in pure and mixed cultures.  In particular, wines were produced in duplicate with the addition of (A) Saccharomyces cerevisiae SFA1, (B) S. cerevisiae SFA2, (C) S. cerevisiae SFA3, (D) S. cerevisiae SFA3, Hanseniaspora opuntiae SFB1 and (E) S. cerevisiae SFA3, H. opuntiae SFB1, H. opuntiae SFB2 and Hanseniaspora uvarum SFC1. At specific time points during the alcoholic fermentation, amplicon-based metagenomics analysis was employed to unravel the microbial community structure at the genus level. In the end of the fermentation process oenological parameters including volatile acidity, residual sugars and ethanol were determined according to the OIV protocols while the volatile compounds produced were measured by GC/MS. Finally, all produced wines were evaluated  by quantitative descriptive analysis. As expected, Saccharomyces dominated the yeast/fungal microbiota of the A-C wine samples throughout fermentation, followed by Aspergillus, Cladosporium and Aureobasidium, mainly at the early fermentation stage. In D and E wine samples, although Hanseniaspora was the predominant genus in early fermentation, the relative abundance of Saccharomyces rapidly increased and dominated until the end of the fermentation. Compared to yeast/fungi, bacterial community was characterized by a quite higher diversity. Although similar genera were identified in all wine samples (A-E), e.g. Bacillus, Oenococcus, Lactococcus, Staphylococcus and Acinetobacter, their relative abundances varied depending on the sample and fermentation stage. As far as the volatile profile was concerned, the GC/MS analysis revealed that the use of different species/yeasts modified the flavor and aroma of the produced wines. More specifically, exceptional amounts of higher alcohols and medium-chain fatty acid esters (known for their floral and fruity contribution) were observed in the co-inoculated wines (D and E), resulting in a more distinct and intense aromas. According to sensory evaluation the co-inoculation with three different yeast species (wine sample E) significantly increased the aromatic typicity characterized by red fruits aromas. Understating the microbial community structure during the alcoholic fermentation could lead to higher quality wine product and constitute a strong tool to direct wine sensory traits

Acknowledgments

This research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call “Greece – Israel Call for Proposals for Joint R&D Projects 2019” (project code: T10ΔΙΣ-00060).

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Dimopoulou Maria¹, Kazou Maria², Drosou Fotini¹, Sellas Vassilis¹, Dourtoglu Vassilis¹ and Tsakalidou Effi²

¹Department of Wine, Vine, and Beverage Sciences, School of Food Science, University of West Attica, Athens, Greece
²Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece

Contact the author

Keywords

amplicon-based metagenomics analysis, wine aromas, regional yeast, Agiorgitiko

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

SENSORY CHARACTERIZATION OF COGNAC EAUX-DE-VIE AGED IN BARRELS REPRESENTING DIFFERENT TOASTING PROCESS

Cognac is an outstanding french wine spirit appreciated around the world and produced exclusively in the Nouvelle-Aquitaine region, and more precisely in the Cognac area. According to AOC regulations (Appellation D’origine Controlée), the spirit required at least 2 years of continuous ageing in oak barrels to be granted the title of Cognac. The oak wood will import color, structure and organoleptic complexity. The different steps during barrel-making process, such as seasoning and toasting, influence the above quality attributes in both wines and spirits.

Soil microbial and arthropod biodiversity under organic and biodynamic viticulture

Aims: The aim of the study was to investigate whether organic or biodynamic management have a long-term impact on 1) the microbial biomass and enzymatic activity in the soil, 2) the soil microbial community, 3) flying as well as soil living arthropods and associated fungi. 

Simulating single band multispectral imaging from hyperspectral imaging: A study into the application of single band visible to near-infrared multispectral imaging for determining table grape quality

To be accepted by the market and consumers table grapes need to meet certain requirements in terms of physical and chemical quality parameters.

Soil mineral nitrogen dynamics in cover-cropped irrigated vineyards with contrasting soil textures

Context and purpose of the study. Cover cropping in vineyards supports grape yield, quality, and soil health.

Effects of organic mulches on the soil environment and yield of grapevine

Farming management practices aiming at conserving soil moisture have been developed in arid and semiarid-areas facing water scarcity problems. Organic mulching is an effective method to manipulate the crop-growing microclimate increasing crop yield by controlling soil temperature, and retaining soil moisture by reducing soil evaporation. In this sense, the effectiveness of different organic mulching materials (straw mulch and grapevine pruning debris) applied within the row of a vineyard was evaluated on the soil and on the vine in a Tempranillo vineyard located in La Rioja (Spain). Organic mulches were compared with a traditional bare soil management technique (based on the use of herbicides to avoid weed incidence). Mulching coverages favourably influenced the soil water retention throughout all the grapevine vegetative cycle. However, the soil-moisture variation was not the same under different mulching materials, being the straw mulch (SM) the one that retained more water in comparison with grapevine pruning debris (GPD) based-cover. The changes of soil moisture in the upper surface layer (0–10 cm) were highly dynamic, probably due to water vapour fluxes across the soil-atmospheric interface. However, both, SM and GPD reduced these fluctuations as compared with bare soils. A similar trend occurred with soil temperature. Both organic mulches altered soil temperature in comparison with bare soil by reducing soil temperature in summer and raising it in winter. Moreover, the same buffering effect for the temperature on the covered soil also remains in the deeper layers. To conclude, we could see that organic mulching had a positive impact on soil-moisture storage and soil temperature and the extent of this effect depends on the type of mulching materials. These changes led to higher rates of photosynthesis and stomatal conductivity compared to bare soils, also favouring crop growth and grape yields.