IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Unravelling the microbial community structure and aroma profile of Agiorgitiko wine under different inoculation schemes

Unravelling the microbial community structure and aroma profile of Agiorgitiko wine under different inoculation schemes

Abstract

Agiorgitiko (Vitis vinifera L. cv.) is the most widely cultivated indigenous red grape variety in Greece, known for the production of Protected Designation of Origin Nemea wines. The aim of the present study was to evaluate five different combinations of yeast starters, previously isolated from spontaneous alcoholic fermentation of the same grape variety, for their oenological potential in terms of fermentation predominance and capacity as well as aromatic contribution to Agiorgitiko wine production. Grapes from the Nemea region, crashed and pressed, were inoculated with different yeast species/strains in pure and mixed cultures.  In particular, wines were produced in duplicate with the addition of (A) Saccharomyces cerevisiae SFA1, (B) S. cerevisiae SFA2, (C) S. cerevisiae SFA3, (D) S. cerevisiae SFA3, Hanseniaspora opuntiae SFB1 and (E) S. cerevisiae SFA3, H. opuntiae SFB1, H. opuntiae SFB2 and Hanseniaspora uvarum SFC1. At specific time points during the alcoholic fermentation, amplicon-based metagenomics analysis was employed to unravel the microbial community structure at the genus level. In the end of the fermentation process oenological parameters including volatile acidity, residual sugars and ethanol were determined according to the OIV protocols while the volatile compounds produced were measured by GC/MS. Finally, all produced wines were evaluated  by quantitative descriptive analysis. As expected, Saccharomyces dominated the yeast/fungal microbiota of the A-C wine samples throughout fermentation, followed by Aspergillus, Cladosporium and Aureobasidium, mainly at the early fermentation stage. In D and E wine samples, although Hanseniaspora was the predominant genus in early fermentation, the relative abundance of Saccharomyces rapidly increased and dominated until the end of the fermentation. Compared to yeast/fungi, bacterial community was characterized by a quite higher diversity. Although similar genera were identified in all wine samples (A-E), e.g. Bacillus, Oenococcus, Lactococcus, Staphylococcus and Acinetobacter, their relative abundances varied depending on the sample and fermentation stage. As far as the volatile profile was concerned, the GC/MS analysis revealed that the use of different species/yeasts modified the flavor and aroma of the produced wines. More specifically, exceptional amounts of higher alcohols and medium-chain fatty acid esters (known for their floral and fruity contribution) were observed in the co-inoculated wines (D and E), resulting in a more distinct and intense aromas. According to sensory evaluation the co-inoculation with three different yeast species (wine sample E) significantly increased the aromatic typicity characterized by red fruits aromas. Understating the microbial community structure during the alcoholic fermentation could lead to higher quality wine product and constitute a strong tool to direct wine sensory traits

Acknowledgments

This research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call “Greece – Israel Call for Proposals for Joint R&D Projects 2019” (project code: T10ΔΙΣ-00060).

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Dimopoulou Maria¹, Kazou Maria², Drosou Fotini¹, Sellas Vassilis¹, Dourtoglu Vassilis¹ and Tsakalidou Effi²

¹Department of Wine, Vine, and Beverage Sciences, School of Food Science, University of West Attica, Athens, Greece
²Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece

Contact the author

Keywords

amplicon-based metagenomics analysis, wine aromas, regional yeast, Agiorgitiko

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Caratteristiche fisico-chimiche dei suoli coltivati a vite e loro influenza nella diffusione del mal dell’esca

Il mal dell’esca é una malattia della vite della quale sono state studiate sintomatologia, eziologia, patogenesi ed epidemiologia. Essendo una malattia che colpisce soprattutto la parte epigea delle piante, le caratteristiche dei suoli non sono mai state considerate fra le responsabili della sua insorgenza e diffusione.

Volatile and phenolic composition of Agiorgitiko wines from eight different areas of PDO Nemea zone

AIM: Agiorgitiko (Vitis vinifera L. cv.) is the most cultivated red grapewine variety in Greece1 located mainly in Nemea region, the largest PDO zone in Greece2. Although Agiorgitiko is considered as one of the most interesting red grape varieties, not only in Greece3, but also at international level4,5, however, there is a lack of knowledge

A fast and sensitive method for total tannin determination in wine based on the substoichiometric quenching of silicon-rhodamine conjugates

Tannins are chemically diverse polyphenols contributing to important sensory attributes of food and beverages. In wine, their structure and quantity depend on several factors, such as the grape variety, climate, soil, viticultural and enological practices and the wine-aging process.

Factors influencing cover crop water competition in vineyards and implications for future drought adaptation

Vineyard water management in Australia is often associated with irrigation in warm and hot climates, but in cooler regions the larger share of the seasonal water demand is met by rainfall.

Development and validation of a standardized oxidation assay for the accurate measurement of the ability of different wines to form “de novo” oxidation-related aldehydes

From the standpoint of wine aroma oxidation there are two effects observed: aroma degradation of oxygen sensitive compounds (polyfunctional mercaptans) and the appearance of new substances with high aromatic power (acetaldehyde, methional, phenylacetaldehyde, sotolon, alkenals, isobutanal and 2, 3-metylbutanals) (1-5). According to our experience, Strecker aldehydes are compounds with highest sensory relevance in the oxidative degradation of many wines (5-7).