IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 New insights on thiol precursors catabolism by yeast during wine fermentation: identification of the N-Acetyl-L-Cysteine conjugate

New insights on thiol precursors catabolism by yeast during wine fermentation: identification of the N-Acetyl-L-Cysteine conjugate

Abstract

Understanding the catabolism of thiol precursors is essential for understanding the revelation of varietal thiols in wine. For many years, knowledge of these precursors has been limited to the S-conjugates of glutathione, cysteine (Cys3SH) and the dipeptides g-GluCys and CysGly, without being able to explain the full origin of 3-sulfanylhexan-1-ol (3SH) in wines. Cysteine was the one considered as the final intermediate before the revelation of 3SH by yeast. Inspired by the glutathione detoxification pathway of xenobiotics, we identified the 3-S-(N-Acetyl-Cysteinyl)hexan-1-ol (NAC3SH) as a new metabolite, by developing (a) a dedicated organic synthesis strategy, (b) a targeted LC-MS/MS analysis method and (c) filiation studies under oenological conditions.In practice, we synthesized NAC3SH by Michael addition of N-Acetyl-L-Cysteine onto trans-2-hexenal in 50/50 water/acetonitrile followed by reduction with NaBH4 in situ. After purification by preparative HPLC, the two diastereomers of NAC3SH were successfully isolated. Characterization was done by both 1D and 2D homonuclear 1H and heteronuclear 1H /13C NMR spectroscopy and quantification by 1D 1H NMR (qNMR). An analytical method for NAC3SH was developed by LC-MS/MS using Cys3SH-d2 as internal standard. The resolution of the two diastereomers could not be achieved under our conditions and they were therefore analyzed in 50/50 equimolar mixture. The method has been validated and showed very satisfactory analytical performances (accuracy = 102%, linearity: R2 = 0.976, LOQ = 6.9 µg/L, LOD = 23 µg/L, repeatability: CV).

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Dournes Gabriel¹, Sachot Somaya¹, Le-Guernevé Christine¹, Suc Lucas1, Mouret Jean-Roch¹ and Roland Aurélie¹  

¹SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France

Contact the author

Keywords

thiol precursors, varietal thiol, grape, wine

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Impact of long term agroecological and conventional practices on subsurface soil microbiota in Macabeu and Xarel·lo vineyards

There is a growing trend on the transition from conventional to agroecological management of vineyards. However, the impact of practices, such as reduced-tillage, organic fertilization and cover crops, is not well-understood regarding the soil microbial diversity, and its relationship with the soil physicochemical properties in the subsurface depth near the rooting zone. Soil bacterial diversity is an important contributor towards plant health, productivity and response to environmental stresses. A field experiment was conducted by sampling subsurface soil bacterial community (NGS and qPCR) near to the root zone of Macabeu and Xarel·lo vineyards, located at the Penedes. 3 organic (ECO) and 3 conventional (CON) vineyards, with more than 10 years of respective management were sampled (n=5 each plot). ECO practices did not affect bacterial and fungal abundance but increased significantly the ammonium oxidizing bacteria and alpha-diversity (Inv.Simpson). Interestingly beta-diversity was significantly affected by the management strategy. ANOSIM-tests revealed a significative effect of the management (ecological vs conventional) and plot, on the soil microbial structure (ASV abundance). Main phyla depicted were Proteobacteria, Actinobacteria and Acidobacteria, whose relative abundances were not affected by the management. EdgeR assay revealed a significant increase of Cyanobacteria and decrease of Gemmatimonadetes and Firmicutes phyla in ECO. Interestingly, the grapevine variety was not correlated with the soil microbial community structure. Mantel-test revealed an important correlation (Spearman) of some physicochemical parameters with the soil microbiota structure, in order of importance: texture, EC, pH Ca/Mg, Mg/P, K+, Mg2+, Ca2+, SO42-, and OM. N-NH4 and NTK, which were higher in the ECO managed soils, did not correlated significantly with the soil microbiome population. The results revealed the importance of combining a deep physicochemical characterization of each replicate with the microbial diversity assessment to gain better insights on the relationship between soil microbiome and vineyard management.

Socioeconomic impact of the LIFE Climawin project from the perspective of employees

This study examines, from the perspective of the employees at Bosque de Matasnos—a demonstrative winery participating in the LIFE Climawin project—the socioeconomic impact and potential contributions of the initiative to the wine sector and the sustainable development of the Ribera del Duero region in Spain.

Sorption of aroma compounds by commercial specific yeast derivatives and the influence of polyphenols

Specific inactivated yeast derivatives (SYDs) from S. cerevisiae are obtained through thermal, mechanical, and enzymatic processes and are used to enhance wine quality.

Using δ13C and hydroscapes as a tool for discriminating cultivar specific drought response

Measurement of carbon isotope discrimination in berry juice sugars at maturity (δ13C) provides an integrated assessment of water use efficiency (WUE) during the period of berry ripening, and when collected over multiple seasons can be used as an indication of drought stress response. Berry juice δ13C measurements were carried out on 48 different varieties planted in a common garden experiment in Bordeaux, France from 2014 through 2021 and were paired with midday and predawn leaf water potential measurements on the same vines in a subset of six varieties. The aim was to discriminate a large panel of varieties based on their stomatal behaviour and potentially identify hydraulic traits characterizing drought tolerance by comparing δ13C and hydroscapes (the visualisation of plant stomatal behaviour as a response to predawn water potential). Cluster analysis found that δ13C values are likely affected by the differing phenology of each variety, resulting in berry ripening of different varieties taking place under different stress conditions within the same year. We accounted for these phenological differences and found that cluster analysis based on specific δ13C metrics created a classification of varieties that corresponds well to our current empirical understanding of their relative drought tolerances. In addition, we analysed the water potential regulation of the subset of six varieties (using the hydroscape approach) and found that it was well correlated with some δ13C metrics. Surprisingly, a variety’s water potential regulation (specifically its minimum critical leaf water potential under water deficit) was strongly correlated to δ13C values under well-watered conditions, suggesting that base WUE may have a stronger impact on drought tolerance than WUE under water deficit. These results give strong insights on the innate WUE of a very large panel of varieties and suggest that studies of drought tolerance should include traits expressed under non-limiting conditions.

Aromatic stability of Syrah and Petit Verdot tropical wines from Brazil

The production of fine wines in the Sub-middle of the São Francisco River Valley, Northeast of Brazil, is relatively recent, about twenty-five years ago. This region presents different characteristics