IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 New insights on thiol precursors catabolism by yeast during wine fermentation: identification of the N-Acetyl-L-Cysteine conjugate

New insights on thiol precursors catabolism by yeast during wine fermentation: identification of the N-Acetyl-L-Cysteine conjugate

Abstract

Understanding the catabolism of thiol precursors is essential for understanding the revelation of varietal thiols in wine. For many years, knowledge of these precursors has been limited to the S-conjugates of glutathione, cysteine (Cys3SH) and the dipeptides g-GluCys and CysGly, without being able to explain the full origin of 3-sulfanylhexan-1-ol (3SH) in wines. Cysteine was the one considered as the final intermediate before the revelation of 3SH by yeast. Inspired by the glutathione detoxification pathway of xenobiotics, we identified the 3-S-(N-Acetyl-Cysteinyl)hexan-1-ol (NAC3SH) as a new metabolite, by developing (a) a dedicated organic synthesis strategy, (b) a targeted LC-MS/MS analysis method and (c) filiation studies under oenological conditions.In practice, we synthesized NAC3SH by Michael addition of N-Acetyl-L-Cysteine onto trans-2-hexenal in 50/50 water/acetonitrile followed by reduction with NaBH4 in situ. After purification by preparative HPLC, the two diastereomers of NAC3SH were successfully isolated. Characterization was done by both 1D and 2D homonuclear 1H and heteronuclear 1H /13C NMR spectroscopy and quantification by 1D 1H NMR (qNMR). An analytical method for NAC3SH was developed by LC-MS/MS using Cys3SH-d2 as internal standard. The resolution of the two diastereomers could not be achieved under our conditions and they were therefore analyzed in 50/50 equimolar mixture. The method has been validated and showed very satisfactory analytical performances (accuracy = 102%, linearity: R2 = 0.976, LOQ = 6.9 µg/L, LOD = 23 µg/L, repeatability: CV).

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Dournes Gabriel¹, Sachot Somaya¹, Le-Guernevé Christine¹, Suc Lucas1, Mouret Jean-Roch¹ and Roland Aurélie¹  

¹SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France

Contact the author

Keywords

thiol precursors, varietal thiol, grape, wine

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Il piano regolatore delle citta’ del vino: una metodologia di lavoro

Sono quattro i terni fondamentali di questo progetto: la sostenibilità; la conoscenza; la parte­cipazione come strumento anche di riduzione della burocrazia e il tema della coerenza delle politiche di settore e della collaborazione fra gli Enti.

Climatic requirements for optimal physiological processes: a factor in viticultural zoning

Les profils climatiques appropriés pour une activité photosynthétique optimale de la vigne sont déterminés dans différentes régions d’Afrique du Sud et localités à l’intérieur d’une région particulière.

Metabolomics comparison of non-Saccharomyces yeasts in Sauvignon blanc and Shiraz

Saccharomyces cerevisiae (SC) is the main driver of alcoholic fermentation however, in wine, non-Saccharomyces species can have a powerful effect on aroma and flavor formation. This study aimed to compare untargeted volatile compound profiles from SPME-GC×GC-TOF-MS of Sauvignon blanc and Shiraz wine inoculated with six different non-Saccharomyces yeasts followed by SC. Torulaspora delbrueckii (TD), Lachancea thermotolerans (LT), Pichia kluyveri (PK) and Metschnikowia pulcherrima (MP) were commercial starter strains, while Candida zemplinina (CZ) and Kazachstania aerobia (KA), were isolated from wine grape environments. Each fermentation produced a distinct chemical profile that was unique for both grape musts. The SC-monoculture and CZ-SC sequential fermentations were the most distinctly different in the Sauvignon blanc while the LT-SC sequential fermentations were the most different from the control in the Shiraz fermentations.

Application of the simplified quality bioclimatical index of Fregoni: suggestion of using its evolution curve

Les indices bioclimatiques constituent un bon outil pour piloter le développement vitivinicole dans une région précise

A new winemaking technology: fermentation, aging and bottling without added additives and preservatives

Auric infinity Technology introduces three new patented products designated for fermentation, aging and bottling without added additives and preservatives that have never been used in the winemaking industry.