IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 New insights on thiol precursors catabolism by yeast during wine fermentation: identification of the N-Acetyl-L-Cysteine conjugate

New insights on thiol precursors catabolism by yeast during wine fermentation: identification of the N-Acetyl-L-Cysteine conjugate

Abstract

Understanding the catabolism of thiol precursors is essential for understanding the revelation of varietal thiols in wine. For many years, knowledge of these precursors has been limited to the S-conjugates of glutathione, cysteine (Cys3SH) and the dipeptides g-GluCys and CysGly, without being able to explain the full origin of 3-sulfanylhexan-1-ol (3SH) in wines. Cysteine was the one considered as the final intermediate before the revelation of 3SH by yeast. Inspired by the glutathione detoxification pathway of xenobiotics, we identified the 3-S-(N-Acetyl-Cysteinyl)hexan-1-ol (NAC3SH) as a new metabolite, by developing (a) a dedicated organic synthesis strategy, (b) a targeted LC-MS/MS analysis method and (c) filiation studies under oenological conditions.In practice, we synthesized NAC3SH by Michael addition of N-Acetyl-L-Cysteine onto trans-2-hexenal in 50/50 water/acetonitrile followed by reduction with NaBH4 in situ. After purification by preparative HPLC, the two diastereomers of NAC3SH were successfully isolated. Characterization was done by both 1D and 2D homonuclear 1H and heteronuclear 1H /13C NMR spectroscopy and quantification by 1D 1H NMR (qNMR). An analytical method for NAC3SH was developed by LC-MS/MS using Cys3SH-d2 as internal standard. The resolution of the two diastereomers could not be achieved under our conditions and they were therefore analyzed in 50/50 equimolar mixture. The method has been validated and showed very satisfactory analytical performances (accuracy = 102%, linearity: R2 = 0.976, LOQ = 6.9 µg/L, LOD = 23 µg/L, repeatability: CV).

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Dournes Gabriel¹, Sachot Somaya¹, Le-Guernevé Christine¹, Suc Lucas1, Mouret Jean-Roch¹ and Roland Aurélie¹  

¹SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France

Contact the author

Keywords

thiol precursors, varietal thiol, grape, wine

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Deciphering grapevine trunk early molecular responses to P. minimum and P. chlamydospora in the presence of a commercial biocontrol agent (Trichoderma atroviride, Vintec®)

Esca, one of the main grapevine trunk diseases, is a complex and poorly understood disease. Phaeoacremonium minimum and Phaeomoniella chlamydospora, two of the main pathogens associated to this disease, are thought to be responsible for the first trunk infections. Little is known concerning grapevine trunk defenses during pathogen infection.

Organic volatile compounds as suitable markers of grapevine response to defense elicitors in the vineyard

In greenhouse, emission of volatile organic compounds (VOC) by grapevine leaves has already been reported in response to the defence elicitor sulfated laminarin (PS3) [1]. In order to check that this response was not specific to PS3, experiments were conducted on Vitis cv Marselan plantlets with several other elicitors of different chemical structures: i.e. Bastid® (COS-OGA),

Challenges and opportunities for increasing organic carbon in vineyard soils: perspectives of extension specialists

Context description and research question: an increasing number of farmers are considering the impact of conservation practices on soil health to guide sustainable management of vineyards. Understanding impacts of soil management on soil organic carbon (SOC) is one lever for adoption of agroecological practice with potential to help maintain or improve soil health while building SOC stocks to mitigate climate change (Amelung et al., 2020).

The evolution of the aromatic composition of carbonic maceration wines

The vinification by Carbonic maceration (CM) involves the process whereby the whole bunches are subjected to anaerobic conditions during several days. In this anaerobic condition, the grape endogenous enzymes begin an intracellular fermentation. This situation favors that whole grapes split open and release their juice into the tank, increasing the liquid phase that is fermented by yeasts [1]. Then, two types of wines are obtained; one from the free-run liquid in the tank (FCM) and other from the liquid after pressing the whole grape bunches (PCM). PCM wines are recognized as high quality young wines because their fruity and floral aromas[2] that although they are very intense at the end of the winemaking they gradually disappear during conservation.

Viticultural agroclimatic cartography and zoning at mesoscale level using terrain information, remotely sensed data and weather station measurements. Case study of Bordeaux winegrowing area

Climate is a key variable for grapevine development and berry ripening processes. At mesoscale level, climate spatial variations are often determined empirically, as weather station networks are generally not dense enough to account for local climate variations.