IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 What metabolomics teaches us about wine shelf life

What metabolomics teaches us about wine shelf life

Abstract

The metabolomics era started about 22 years ago, and wine was one of the first foodstuff subjects of analysis and investigation by this technique. Wine, which is most likely the richest food in terms of number of metabolites, was an excellent chemical model solution for chemists to explore the potentialities of this new technique, which enable untargeted study. Since then, metabolomics techniques were applied in several oenological studies shedding light on numerous questions from vine to glass.
In fact, metabolomics techniques helped us to gain knowledge on the chemical modifications taking place during the wine aging and shelf life, which has a paramount importance since wine is one of the few foods that aging may improve its sensorial character and economical value. Recently, the combination of well-designed experiments, high-resolution mass spectrometers and modern informatic tools opened new roads for better understating how primary and secondary metabolites are modified during aging, and we learned new reactions taking place or followed in detailed reactions which were not very clear. This talk will provide a snapshot of recent publications regarding the behaviour of wine’s metabolome during shelf life.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Panagiotis Arapitsas¹,²

¹Research and Innovation Centre, Fondazione Edmund Mach
²Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica

Contact the author

Keywords

metabolomics, high-resolution mass spectrometry, chemistry of wine, data analysis

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Cluster trait prediction using hyperspectral signatures in a population of 221 Riesling clones

Cluster architecture in grapevine plays a critical role in influencing bunch microclimate, thus quality traits, including sugar content, phenolic composition, and disease susceptibility.

Effect of different pH values on the interaction between yeast mannoproteins and grape seed flavanols

The consequences of the global climate change in the vitiviniculture are revealed as a gap between phenolic and technological grape maturities, higher grape sugar concentration that leads to high wine alcohols levels, lower acidities and high pH values, among others. The unbalanced phenolic maturity caused in this scenario leads to harsh astringency and to instable colour of wines. Previous studies have reported that the addition of yeast mannoproteins (MPs) to wines may have positive effects on these two organoleptic properties due to their capability to interact with wine polyphenols [1]; however, studies about the effect of the pH on these interactions have not been carried out so far.

Rară Neagră 2.0: prospecting, improving and safeguarding the biodiversity in an eastern european heritage grape variety

The Rară Neagră 2.0 project aims to restore and safeguard the intra-varietal diversity of the ancient Eastern European grape variety Rară Neagră through polyclonal selection and the establishment of a certified genetic conservatory.

DETERMINATION OF MINERAL COMPOSITION IN CV. TERAN (VITIS VINIFERA L.) RED WINE AFFECTED BY PRE-FERMENTATIVE MASH COOLING, HEATING, SAIGNÉE TECHNIQUE AND PROLONGED POST-FERMENTATIVE MACERATIONS

This study aimed to determine mineral composition in red wine obtained from cv. Teran (Vitis vinifera L.), autochtonous Croatian grape variety. Six different vinification treatments, including the control treatment (7-day standard maceration), were performed to study the effects of: 48-hour pre-fermentative mash cooling (8 °C) followed by prolonged post-fermentative maceration of 13 days (C15), 28 days (C30), and saignée technique (juice runoff) proceeded with prolonged post-fermentative maceration of 13 days (CS15); and effect of 48-hour heating (50 °C) followed by prolonged post-fermentative maceration of 13 days (H15) and 28 days (H30) on macro- and microelements in wine.

Effects of the addition of yeast derived products during aging in chardonnay sparkling winemaking

From the beginning of the yeast autolysis process, several interesting intracellular and cell wall constituyents are released to the media providing different characteristics to the wine, being this process extensively studied in sparkling wines due to their important contribution to their properties (1-2). Yeast derived products (YDs) try to emulate the natural yeast autolysis compounds release enhancing the organoleptic characteristics of resulting wines (2-3). This study is a comprehensive evaluation of the impact of the addition of different YDs added to base wine on the chemical, physical and sensory characteristics of the resulting sparkling wines. METHODS: Chardonnay base wine was employed to carry out this study. Three experimental YDs were added at 5 and 10 g/hL to the tirage liqueur: a yeast autolysate (YA), a yeast protein extract (PE) and an inactivated dry yeast from Torulaspora delbrueckii, (TD), and two commercial specific inactivated dry yeast: OPTIMUM WHITE® (OW) and PURE-LONGEVITY®(PL). After second fermentation, measurements were carried out after 3, 6, 9 and 18 months of aging on lees. General enological parameters, proteins, polysaccharides (HPLC-DAD-RID), volatile compounds profile (GC-MS), foaming characteristics (Mosalux), and descriptive sensory analyses were carried out.