IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 What metabolomics teaches us about wine shelf life

What metabolomics teaches us about wine shelf life

Abstract

The metabolomics era started about 22 years ago, and wine was one of the first foodstuff subjects of analysis and investigation by this technique. Wine, which is most likely the richest food in terms of number of metabolites, was an excellent chemical model solution for chemists to explore the potentialities of this new technique, which enable untargeted study. Since then, metabolomics techniques were applied in several oenological studies shedding light on numerous questions from vine to glass.
In fact, metabolomics techniques helped us to gain knowledge on the chemical modifications taking place during the wine aging and shelf life, which has a paramount importance since wine is one of the few foods that aging may improve its sensorial character and economical value. Recently, the combination of well-designed experiments, high-resolution mass spectrometers and modern informatic tools opened new roads for better understating how primary and secondary metabolites are modified during aging, and we learned new reactions taking place or followed in detailed reactions which were not very clear. This talk will provide a snapshot of recent publications regarding the behaviour of wine’s metabolome during shelf life.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Panagiotis Arapitsas¹,²

¹Research and Innovation Centre, Fondazione Edmund Mach
²Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica

Contact the author

Keywords

metabolomics, high-resolution mass spectrometry, chemistry of wine, data analysis

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

VOLATILE AND GLYCOSYLATED MARKERS OF SMOKE IMPACT: EVOLUTION IN BOTTLED WINE

Smoke impact in wines is caused by a wide range of volatile phenols found in wildfire smoke. These compounds are absorbed and accumulate in berries, where they may also become glycosylated. Both volatile and glycosylated forms eventually end up in wine where they can cause off-flavors. The impact on wine aroma is mainly attributed to volatile phenols, while in-mouth hydrolysis of glycosylated forms may be responsible for long-lasting “ashy” aftertastes (1).

Deciphering the color of rosé wines using polyphenol targeted metabolomics

The color of rosés wines is extremely diverse and a key element in their marketing. It is due to the presence of red anthocyanins extracted from grape skins and pigments formed from them and other wine constituents during wine-making.

A synthesis approach on the impact of elevated CO2 on berry physiology and yield of Vitis vinifera

Besides the increase in global mean temperature the second main challenge of a changing climate is the increase in atmospheric carbon dioxide (CO2) in relation to physiology and yield performance of grapevines. The benefits of increasing CO2 levels under greenhouse environment or open field studies have been well investigated for various annual crops. Research under free carbon dioxide enrichment on field-grown perennial plants such as grapevines is limited to a few studies. Further, chamber and greenhouse experiments have been conducted mostly on potted vines under eCO2 conditions.

Assessment of plant water consumption rates under climate change conditions through an automated modular platform

The impact of climate change is noticeable in the present weather, making water scarcity the most immediate mediator reducing the performance and viability of crops, including grapevine (Vitis vinifera L.). The present study developed a system (hardware, firmware, and software) for the determination of plant water use through changes in weight through a period. The aim is to measure the differences in grapevine water consumption in response to climate change (+4oC and 700 ppm) under controlled conditions. The results reveal a correlation between daily plant consumption rates and reference evapotranspiration (ETo).