IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 What metabolomics teaches us about wine shelf life

What metabolomics teaches us about wine shelf life

Abstract

The metabolomics era started about 22 years ago, and wine was one of the first foodstuff subjects of analysis and investigation by this technique. Wine, which is most likely the richest food in terms of number of metabolites, was an excellent chemical model solution for chemists to explore the potentialities of this new technique, which enable untargeted study. Since then, metabolomics techniques were applied in several oenological studies shedding light on numerous questions from vine to glass.
In fact, metabolomics techniques helped us to gain knowledge on the chemical modifications taking place during the wine aging and shelf life, which has a paramount importance since wine is one of the few foods that aging may improve its sensorial character and economical value. Recently, the combination of well-designed experiments, high-resolution mass spectrometers and modern informatic tools opened new roads for better understating how primary and secondary metabolites are modified during aging, and we learned new reactions taking place or followed in detailed reactions which were not very clear. This talk will provide a snapshot of recent publications regarding the behaviour of wine’s metabolome during shelf life.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Panagiotis Arapitsas¹,²

¹Research and Innovation Centre, Fondazione Edmund Mach
²Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica

Contact the author

Keywords

metabolomics, high-resolution mass spectrometry, chemistry of wine, data analysis

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

IDENTIFICATION OF NEW RESVERATROL DERIVATIVES FORMED IN RED WINE AND THEIR BIOLOGICAL PROPERTIES

Stilbenes are natural bioactive polyphenols produced by grapevine. Recently, we have reviewed the na- tural presence of these compounds in wines [1]. This study showed that the resveratrol and its glycoside, the piceid, are the most abundant stilbenes in wines. Resveratrol is a well-known stilbene with a wide range of biological activities. Due to its specific structure, resveratrol can be oxidized in wines to form various derivatives including oligomers [2]. In this study, we investigate the resveratrol and piceid transformation in wines.

Effect of “Terroir” on quanti-qualitative paramethers of “vino nobile di Montepulciano”

In this last ten years period, there has been many integrated and interdisciplinary studies to determine the aptitude of different zones to viticulture (Lulli et al., 1989 ; Costantini, 1992 ; Fregoni et al., 1992). The researches needed some différent knowledges about environment characteristics (soil, climate), ecology, vineyard management, vine genetic, winemaking and sensory analysis. The interaction of all these knowledge produced the assessment about the environmental vocation (Scienza et al., 1992). By means of this metodology, the “viticultural vocation” joined the word “zoning”, that is the territory parting for its ecopedological and geographical characteristics in relation to adaptative answer of winegrape (Morlat, 1989).

Selection of beneficial endophytes from Sicilian grapevine germplasm 

The recent expansion of arid areas due to climate change is putting grapevine and the other traditional productions at risk in all Mediterranean countries with a limited availability of fundamental resources such as water. It is possible to improve the resilience of vineyards by developing sustainable agricultural practices based on biological and natural resources such as endophytic microorganisms that colonize inner plant tissues, and which can potentially increase the tolerance to abiotic stresses. A selection of grapevine endophytes was conducted from 2021 to 2023 as part of the PRIMA project PROSIT.

Active thermography to determine grape bud mortality: system design and feasibility

Bud death due to cold damage is a recurrent and major economic issue with Vitis vinifera L. in the Northeastern U.S. winegrowing regions. Primary buds – and sometimes secondary and tertiary buds – are often damaged by fluctuating temperatures in the winter and early spring. To maintain balanced vegetative and reproductive growth of a vine, pruning practices need to be adjusted to account for bud damage. Conventional bud damage assessment requires growers to sample canes/spurs, cut nodes with a razor blade, and then visually assess bud damage. This process is laborious and becomes a major barrier for damage-compensated pruning decision-making, leading to too few live buds per vine and the associated excessive vigor and low yield that result. The overarching goal of this study was to develop an active thermographic system for non-destructive detection of bud damage in the vineyard.

Guard cells and stomatal movement reveal early molecular interaction between grapevine cells and esca-associated pathogens

Esca is one of the major grapevine trunk diseases that cause vineyards decline and important economic losses in vineyards.