Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Carbon isotope labeling to detect source-sink relationships in grapevines upon drought stress and re-watering

Carbon isotope labeling to detect source-sink relationships in grapevines upon drought stress and re-watering

Abstract

AIM: Kinetics of carbon allocation in the different plant sinks (root-shoot-fruit) competing in drought stressed and rehydrated grapevines have been investigated.

METHODS: A plant growth chamber for stable isotope labeling has been set in an environmental control system, basing on pulse-chasing isotopic strategy to trace carbon phloem flows on potted grapevines.In addition, an open-air plant/soil growth system consisting in twelve independent plant/pot balloons with computing-adjustable air flows allowing continuous gas exchange detection between plants / soil and atmosphere has been set.

RESULTS: Water stress caused a drastic decrease in the photosynthesis rate and a decrease in the respiration rate of the soil by about 50%; after rehydration the plants fully recovered the photosynthetic capacity in the morning, while the photosynthetic capacity in the afternoon remained compromised. Sugar accumulation in berries decreased in plants subjected to continuous stress, while the acidity was higher for both plants subjected to continuous stress and rehydrated plants. Grape production was lower in plants subjected to continuous stress.Plants under water stress had a low and constant microbial biomass throughout the season, whereas irrigated and rehydrated plants remained similar in the first days of the experiment, and an explosion of microbial biomass was recorded in plants rehydrated 15 days after rehydration. This may indicate a higher contribution of carbon allocated by the rehydrated plant to the microbial mass of the rhizosphere.

CONCLUSIONS

Water stress causes a greater diversion of the newly photosynthesized carbonaceous resources to the berry (about double compared to irrigation controls). The carbon accumulated in the berry is stored in a stable manner. The carbon diverted to the root over 30 days is mostly consumed.The plant in recovery diverts the same percentage of carbon marked to the berry of the plants in water stress although in absolute its photosynthesis is about double than under water stress (it is comparable or even higher than photosynthesis un irrigated control plants); therefore the total C sent to the berry is greater in recovery than in irrigation control.Through a daily respired / photosynthesized C balance we show that during the ripening of the berry 60% of the C assimilated in the irrigated condition is respired. Since the accumulation of neo-photosynthetate is stable at 27%, this amount does not affect the reserves accumulated in the pre-veraison root.Delivery of labeled carbon in different sinks is discussed in parallel with the expression of genes involved in carbohydrate transport. Financial support: CARBOSTRESS project – CRT – Cassa Risparmio Torino Foundation.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Davide Lucien Patono

Dept. Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy,Daniel, SAID PULLICINO, Dept. Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy  Leandro, ELOI ALCATRAO, Dept. Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy  Giorgio, IVALDI, Dept. Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy  Andrea, FIRBUS, Dept. Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy  Giorgio, GAMBINO, Institute for Sustainable Plant Protection, National Research Council, Turin, Italy  Irene, PERRONE, Institute for Sustainable Plant Protection, National Research Council, Turin, Italy  Walter, CHITARRRA, Centro di Ricerca Viticoltura ed Enologia VE, CREA, Conegliano, Italy  Alessandra, FERRANDINO, Dept. Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy  Davide, RICAUDA AIMONINO, Dept. Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy  Luisella, CELI, Dept. Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy  Claudio, LOVISOLO, Dept. Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy

Contact the author

Keywords

drought, carbon isotope labeling, respiration, photosynthesis, phloem

Citation

Related articles…

South Africa’s top 10 Sauvignon blanc wines. How do the chemical and sensory profiles compare?

FNB Top 10 Sauvignon Blanc competition, presented by the Sauvignon Blanc Interest Group of South Africa and sponsored by First National Bank, is the country’s foremost platform for producers of this cultivar to showcase and benchmark their wines. Wines entered in the competition originated from all over the winegrowing regions of the country and the winning wines showed good representation of quality South African Sauvignon blanc wines. The ten selected wines were subjected to various chemical analyses including volatile thiol and methoxypyrazine determination, while the sensory profile of each wine was determined using projective mapping.

Adapting the vineyard to climate change in warm climate regions with cultural practices

Since the 1980s global regime shift, grape growers have been steadily adapting to a changing climate. These adaptations have preserved the region-climate-cultivar rapports that have established the global trade of wine with lucrative economic benefits since the middle of 17th century. The advent of using fractions of crop and actual evapotranspiration replacement in vineyards with the use of supplemental irrigation has furthered the adaptation of wine grape cultivation. The shift in trellis systems, as well as pruning methods from positioned shoot systems to sprawling canopies, as well as adapting the bearing surface from head-trained, cane-pruned to cordon-trained, spur-pruned systems have also aided in the adaptation of grapevine to warmer temperatures. In warm climates, the use of shade cloth or over-head shade films not only have aided in arresting the damage of heat waves, but also identified opportunities to reduce the evapotranspiration from vineyards, reducing environmental footprint of vineyard. Our increase in knowledge on how best to understand the response of grapevine to climate change was aided with the identification of solar radiation exposure biomarker that is now used for phenotyping cultivars in their adaptability to harsh environments. Using fruit-based metrics such as sugar-flavonoid relationships were shown to be better indicators of losses in berry integrity associated with a warming climate, rather than solely focusing on region-climate-cultivar rapports. The resilience of wine grape was further enhanced by exploitation of rootstock × scion combinations that can resist untoward droughts and warm temperatures by making more resilient grapevine combinations. Our understanding of soil-plant-atmosphere continuum in the vineyard has increased within the last 50 years in such a manner that growers are able to use no-till systems with the aid of arbuscular mycorrhiza fungi inoculation with permanent cover cropping making the vineyard more resilient to droughts and heat waves. In premium wine grape regions viticulture has successfully adapted to a rapidly changing climate thus far, but berry based metrics are raising a concern that we may be approaching a tipping point.

Identification of γ-nonalactone precusor in Merlot and Cabernet-Sauvignon grapes

Wine flavor results on complexes interactions of odorous components, which come from different aromatic families like esters, thiols, aldehydes, pyrazines or lactones.

The FEM grapevine breeding program: new registered varieties (mid-)resistant to the main ampelopathies

“Vinum debet esse naturale ex genimine vitis et non corruptum”. The Eucharistic wine must be made with pure grapes that must not be contaminated in any way. This is how wine was born in the monastery of the Augustinians, and that is how the genetic improvement of grapevine implemented over the decades at the Agricultural Institute of San Michele all’Adige (since 1874; Trentino – Italy) has been oriented to make the cultivation of grapes always more sustainable. This concept is still current and meets the worldwide urgent need of reducing the use of chemicals, under a climate crisis scenario. Since the beginning of the twentieth century, the varieties introduced in Trentino and the new cultivars produced by pioneer breeders have already embraced the principle of sustainable viticulture.

Setting up new tools to reduce the duration of the grapevine breeding process : Mercier experience

Since some years, the French wine sector faces strategical challenges, all linked to climate change. Multiple issues have been observed like diseases development, early frost, drought, change in the precocity and maturity of grapes, each one resulting in loss of productivity and yield. In France, the varieties proposed today by nurseries are historical varieties that are not well adapted to those changes. Therefore, Mercier Frères, one of the leading grapevine nursery, has decided to start its own research programs, with the help of its laboratory Novatech, to answer the growing demand for new grapevine varieties.