IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Early fermentation aroma profiles of grape must produced by various non-Saccharomyces starters

Early fermentation aroma profiles of grape must produced by various non-Saccharomyces starters

Abstract

Saccharomyces cerevisiae is the most commonly used yeast species in winemaking. The recent research showed that non-Saccharomyces yeasts as fermentation starters show numerous beneficial features and can be utilized to reduce wine alcoholic strength, regulate acidity, serve as bioprotectants, and finally improve wine aromatic complexity. The majority of published studies on this topic investigated the influence of sequential or co-inoculations of non-Saccharomyces and S. cerevisiae yeasts on the aroma of final wine. Although some results are consistent with each other, there are many contrasting and contradicting outcomes, which most likely derived from the differences in grape juice composition, as well as due to various combinations and interactions of non-Saccharomyces and S. cerevisiae strains used in different studies. For these reasons, the actual contribution of non-Saccharomyces yeasts was often not completely distinguishable. The main premise of this study was that by investigating the production of volatile aroma compounds produced by non-Saccharomyces yeasts in the early phase of fermentation, prior to interaction with S. cerevisiae, a valuable insight from another perspective can be achieved about the particular effects they induce. Malvazija istarska (Vitis vinifera L.) white grape must was inoculated with the following non-Saccharomyces yeasts: Torulaspora delbrueckii, Metschnikowia
pulcherrima, Pichia kluyveri, Lachancea thermotolerans and Schizosaccharomyces pombe, while Saccharomyces cerevisiae was used as a control. The fermenting grape musts were subjected to headspace solid-phase microextraction and gas-chromatography-mass spectrometric analysis at the point just before S. cerevisiae inoculation, when alcohol level reached 1.5 – 2.5 vol. %. Each of the investigated non-Saccharomyces yeasts produced a
unique and distinctive aroma profile. The highest concentrations of linalool and β-damascenone were found in the must fermented by Pichia kluyveri and the lowest in the control S. cerevisiae must. The concentration of 2-phenylethanol produced by S. cerevisiae almost doubled those found in the musts of non-Saccharomyces starters. Ethyl propanoate differentiated well the investigated yeasts, with the highest concentration found in T.
delbrueckii must. This must also contained the highest concentrations of some other propanoates, including 2-phenethyl propanoate which turned out to be specific for this species. Particular non-Saccharomyces yeasts boosted the early synthesis of many important esters, such as ethyl hexanoate, ethyl octanoate and 2-phenethyl acetate, the main contributors to fruity and flowery notes of wine aroma. The obtained results showed that the potential of the investigated non-Saccharomyces yeasts to produce diverse wines is rather high. This study was funded by Croatian Science Foundation under the projects IP-2020-02-4551 and DOK-2021-02-5500.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Delač Salopek Doris1, Horvat Ivana1, Hranilovic Ana2, Plavsa Tomislav1, Radeka Sanja1, Paskovic Igor1 and Lukic Igor1 

1Institute for Agriculture and Tourism
2Department of Wine Science, The University of Adelaide 

Contact the author

Keywords

non-Saccharomyces yeasts, sequential inoculation, SPME-GC-MS, volatile aroma compounds, esters

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Relationship between terroir and vegetative potential, productivity, yield and must composition of Vitis Vinífera L. Cvs. Cabernet Sauvignon under warm climate conditions

One cultivar could produce distinct wines with typical properties and qualities different depending on its cultivated and its mesoclimatic conditions.

Conservation of intravarietal diversity in France: exhaustive overview and perspectives

Since the renewal of the French vineyard after the Phylloxera crisis, the panorama of cultivated varieties has dramatically changed. This current genetic erosion is due to the increasing interest

Transforming the grapevine world through new breeding techniques

Climate change and environmental degradation are existential threats to europe and the world. One of the most important objectives is to reduce by 2030 the use and the risk of chemical pesticides and fertilisers, reducing nutrient losses and increasing organic farming. Grapevine (vitis spp.) is one of the major and most economically important fruit crops worldwide. It is characterised by high levels of genetic diversity, as result of natural genetic mutations, which are common in grapevines and further assisted by ongoing vegetative propagation.

Whole bunch fermentation: adding complexity, or just making ‘green’ wine?

Certain grape varieties contain negligible levels of isobutyl methoxypyrazine (IBMP) in grapes. However, it has long been known that grape stems

New biological tools to control and secure malolactic fermentation in high pH wines

Originally, the role of the malolactic fermentation (MLF) was simply to improve the microbial stability of wine via biological deacidification. However, there is an accumulation of evidence to support the fact that lactic acid bacteria (LAB) also contribute positively to the taste and aroma of wine. Many different LAB enter into grape juice and wine from the surface of grape berries, cluster stems, vine leaves, soil and winery equipment. Due to the highly selective environment of juices and wine, only a few types of LAB are able to grow.