IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 A browser application for comprehensive 3-dimensional LC × LC × IM – MS data analysis to study grape and wine polyphenols

A browser application for comprehensive 3-dimensional LC × LC × IM – MS data analysis to study grape and wine polyphenols

Abstract

The analysis of structurally diverse proanthocyanidins in grapes and wine is challenging. Comprehensive two-dimensional liquid chromatography (LC×LC) and ion mobility spectrometry-mass spectrometry (IMS-MS) are increasingly used to address the challenges associated with the analysis of highly complex samples such as wine and grapes. Hyphenation of these techniques in form of a comprehensive three-dimensional LC×LC×IMS separation system coupled to high resolution – mass spectrometry significantly increases separation power. The gain of separation power results in very opulent and complex four-dimensional data structure. One of the main challenges of such a system is the lack of commercial software to accommodate the resulting four-dimensional data. We therefore developed a Python protocol using Jupyter notebooks for the extraction, visualization and interpretation of such data. Jupyter notebooks allow all methods of signal and data processing and even interactive visualizations. The user, however, needs programming skills to employ the notebooks. To make the data analysis approach available to analytical chemists without programming skills, we developed an interactive analytical browser application based on the Python package Plotly’s Dash.

The visualization of an extracted ion chromatogram (EIC) of the LC×LC×IMS-MS data is achieved by a 3-dimensional scatter plot representing the first and second dimension retention times and the IMS drift time on the x-, y- and z-axis of the scatter plot, respectively. Peaks appear as clouds of data points in this three-dimensional space. A mouse click on a data point shows the high-resolution mass spectrum in a separate bar plot. An example of the usage of the browser app includes separations of the procyanidin trimers (865 m/z) found in grape seed extract

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Vestner Jochen¹, Venter Pieter², Fischer Ulrich1 and De Villiers André²

¹Institute for Viticulture and Oenology, DLR Rheinpfalz
²Department of Chemistry and Polymer Science, Stellenbosch University

Contact the author

Keywords

comprehensive multidimensional chromatography, liquid chromatography, ion mobility spectrometry, data analysis, polyphenols

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Differentiating and grouping of oltrepo’ pavese environments according to grape maturation

The maturation patterns process has been very studied. In particular the modelization of the sugars and titratable acidity during the ripening period was an important approach, in particular for the prediction of harvest date (Barillere et al., 1988; Jourion et al.,1987; Maujean et al., 1983; Scienza, 1989). In Oltrepò Pavese, the widest viticultural district of Lombardy – Northern Italy – (about 15000 hectares), grape maturation trends shows high variability, due to the large variation in environmental characteristics of vineyards (altitude, exposure, soil type, mesoclimate) and to “cultivar x environment” interaction.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.

Building of a hierarchy of wines based on terroirs: an initiative from the producers of Muscadet

The Muscadet area is situated in the southeast of Nantes, close to the Atlantic coast. It constitutes the western extension
of the French vineyard “Loire Valley”. The Muscadet is renowned and often spontaneously linked to a white wine.
However it remains misconceived as an ordinary wine, lacking authenticity.

Cordon height and deficit irrigation practices interact to affect yield and fruit quality of Cabernet Sauvignon and petite Sirah grown in a hot climate

Cabernet Sauvignon and Petite Sirah are the top red wine cultivars in CA, however, the hot climate in Fresno is not ideal for red Vitis Vinifera, particularly for berry color development. Mechanical pruning and irrigation were studied previously to significantly affect grapevine yield performance and berry quality. But there is lack of studies on cordon height and irrigation on mechanical pruned vineyard system.

Influence of cell-cell contact on yeast interactions and exo-metabolome

Alcoholic fermentation is the main step for winemaking, mainly performed by the yeast Saccharomyces cerevisiae. But other wine yeasts called non-Saccharomyces may contribute to alcoholic fermentation and modulate the wine aroma complexity. The recurrent problem with the use of these non-Saccharomyces yeasts is their trend to die off prematurely during alcoholic fermentation, leading to a lack of their interesting aromatic properties searched in the desired wine. This phenomenon appears to be mainly due to interactions with S. cerevisiae. These interactions are often negatives but remain unclear because of the species and strain specific response. Among the non-Saccharomyces yeasts, Lachancea thermotolerans is a wine yeast naturally found in grape must and well known as a great L-lactic acid producer and an aromatic molecules enhancer, but its behavior during alcoholic fermentation can be completely different in co-fermentation with S. cerevisiae in function of strain used.