IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 A browser application for comprehensive 3-dimensional LC × LC × IM – MS data analysis to study grape and wine polyphenols

A browser application for comprehensive 3-dimensional LC × LC × IM – MS data analysis to study grape and wine polyphenols

Abstract

The analysis of structurally diverse proanthocyanidins in grapes and wine is challenging. Comprehensive two-dimensional liquid chromatography (LC×LC) and ion mobility spectrometry-mass spectrometry (IMS-MS) are increasingly used to address the challenges associated with the analysis of highly complex samples such as wine and grapes. Hyphenation of these techniques in form of a comprehensive three-dimensional LC×LC×IMS separation system coupled to high resolution – mass spectrometry significantly increases separation power. The gain of separation power results in very opulent and complex four-dimensional data structure. One of the main challenges of such a system is the lack of commercial software to accommodate the resulting four-dimensional data. We therefore developed a Python protocol using Jupyter notebooks for the extraction, visualization and interpretation of such data. Jupyter notebooks allow all methods of signal and data processing and even interactive visualizations. The user, however, needs programming skills to employ the notebooks. To make the data analysis approach available to analytical chemists without programming skills, we developed an interactive analytical browser application based on the Python package Plotly’s Dash.

The visualization of an extracted ion chromatogram (EIC) of the LC×LC×IMS-MS data is achieved by a 3-dimensional scatter plot representing the first and second dimension retention times and the IMS drift time on the x-, y- and z-axis of the scatter plot, respectively. Peaks appear as clouds of data points in this three-dimensional space. A mouse click on a data point shows the high-resolution mass spectrum in a separate bar plot. An example of the usage of the browser app includes separations of the procyanidin trimers (865 m/z) found in grape seed extract

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Vestner Jochen¹, Venter Pieter², Fischer Ulrich1 and De Villiers André²

¹Institute for Viticulture and Oenology, DLR Rheinpfalz
²Department of Chemistry and Polymer Science, Stellenbosch University

Contact the author

Keywords

comprehensive multidimensional chromatography, liquid chromatography, ion mobility spectrometry, data analysis, polyphenols

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Comparing different vineyard sampling densities and patterns for spatial interpolation of intrinsic water use efficiency

The need to rationalize agricultural inputs has recently increased interest in assessing vineyard variability in order to implement variable rate input applications, so-called ‘precision viticulture’. In many viticultural areas globally, precision viticulture is already widely used such as for selective harvesting and variable rate application (VRA) of inputs such as irrigation and/or fertilizer. Robust VRA relies on having a geostatistically accurate map (of one or more vineyard attributes) requiring high sampling densities, which can be cost- and time-prohibitive to obtain. Previous work on spatial interpolation using kriging have upscaled ground-based measurements, but such upscaling strategies are applicable only when vineyard conditions are spatially continuous and satisfies the assumption of second-order stationary processes. Alternatively, mixed models that combine kriging and auxiliary information, such as the regression kriging (RK) method, are more instructive for spatial predictions. In order to improve prediction accuracies, it is therefore necessary to incorporate additional information to achieve accurate spatial patterns with low error.

INTENSE PULSED LIGHT FOR VINEYARD WASTEWATER: A PROMISING NEW PROCESS OF DEGRADATION FOR PESTICIDES

The use of pesticides for vine growing is responsible for generating an important volume of wastewater. In 2009, 13 processes were authorized for wastewater treatment but they are expensive and the toxicological impact of the secondary metabolites that are formed is not clearly established. Recently photodecomposition processes have been studied and proved an effectiveness to degrade pesticides and to modify their structures (Maheswari et al., 2010, Lassale et al., 2014). In this field, Pulsed Light (PL) seems to be an interesting and efficient process (Baranda et al., 2017). Therefore, the aim of this work was to investigate the PL technology as a new process for the degradation of pesticides.

Historical zoning in the world

The study of the interaction between vineyards and the environment to establish the grapevines in the appropriate places has been applied in wine science for 5000 years. Advances in the field of the zoning have not been uniform in time, and have occupied a preferential place in the contributions of Roman writers of the 1st Century AC, the contemplations of Tokay (1700) and Porto (1756) and works of the second half of the 20th century. Zoning practices today integrate multidisciplinary methodologies (viticulture, enology, soils, climatology, cartography, statistics, computer science) and require further development for future application.

Quantification of polysaccharides of variety Pomaces of the D.O.Ca Rioja

Pomace is one of the main residues generated by the wine industry and represents an environmental problem. Currently, there is a growing interest in the revaluation of these products because different bioactive compounds can be obtained from them, such as polyphenols, grape seed oils and polysaccharides. Red grape pomace can be an important source of polysaccharides, but they are currently little studied and even less with viable and environmental extraction processes (green extraction), such as flash extraction. The residual amount of the fraction rich in pectin (residual pulp) and component rich in hemicellulose in the pomace and the strength of association of the pectin with the cellulose-xyloglucan network depend on the degree of extractability of the polysaccharides in red winemaking and on the winemaking conditions.

A fast and sensitive method for total tannin determination in wine based on the substoichiometric quenching of silicon-rhodamine conjugates

Tannins are chemically diverse polyphenols contributing to important sensory attributes of food and beverages. In wine, their structure and quantity depend on several factors, such as the grape variety, climate, soil, viticultural and enological practices and the wine-aging process.