IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 High-power ultrasound for improving chromatic characteristics in wines. Does a varietal effect exist?

High-power ultrasound for improving chromatic characteristics in wines. Does a varietal effect exist?

Abstract

The use of high-power ultrasound (US) during the winemaking process has been extensively studied at laboratory scale in order to demonstrate its possible use to improve the extraction of compounds of interest. However, studies on semi-industrial and industrial scale are needed to confirm this positive effect, since the International Organization of Vine and Wine approved its industrial use in 2019 [1]. On the other hand, numerous studies on the characterization of grape varieties have shown some differences in their physical and chemical characteristics [2], and these may affect the outcome of the ultrasound treatment. Thus, our work focuses on the chromatic study of wines made from three different varieties (Monastrell, Cabernet Sauvignon and Syrah), to determine whether the use of US at a semi-industrial level facilitate the extraction of compounds of interest from the different varieties.Thereby, Monastrell, Syrah and Cabernet Sauvignon grapes were vinified. Four pilot scale trials were carried out for each variety: In two of them, ultrasound treatment was not applied in order to be used as controls (C). For the other two elaborations, the destemmed and crushed grape was subjected to ultrasound treatment (US) using a semi-industrial scale high power ultrasound equipment at a sonication frequency of 30kHz and a flow rate of 400 kg/h. Sonication was applied after destemming-crushing of the grapes for subsequent maceration. One of the control trials along with one of the US trials underwent a 3-day maceration, while the remaining two trials underwent a 7-day maceration of must-wine contact with the solid parts of the grapes. Physicochemical and chromatic parameters, as well as phenolic concentration and composition were analyzed by spectrophotometry and high-performance liquid chromatography respectively at the time of bottling.The results showed large differences between varieties. Wines obtained by sonicated grape of Syrah and Cabernet Sauvignon varieties showed greater color intensity and concentration of the different phenolic compounds analyzed both with 3 or 7 days of skin maceration. Moreover, those wines made from sonicated grapes and 3 days of skin maceration present similar chromatic characteristics of those wines made from control grapes and 7 days of maceration, which indicates that ultrasounds used on a semi-industrial scale can be of great interest in order to reduce maceration time in wineries, thus increasing their production capacity.Different behavior was observed in Monastrell wines, where no positive effect was observed in wines made from sonicated grapes and 3 days of maceration although wines obtained from Monastrell sonicated musts and 7 days of skin maceration showed a higher concentration of polymerized stable compounds and tannins than their respective controls, which would be of interest to improve the long-term stability of these wines. The possible reasons behind these differences would be discussed.

References

[1] OIV. (2019). Resolution OIV-OENO 616-2019. Paris, France: OIV.
[2] Ortega-Regules, A., Ros-García, J. M., Bautista-Ortín, A. B., López-Roca, J. M., & Gómez-Plaza, E. (2007). European Food Research and Technology, 227(1), 223–231.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Pérez-Porras Paula1, Bautista-Ortín Ana Belén1, Jurado Ricardo2 and Gómez-Plaza Encarna1

1Department of Food Science and Technology, Faculty of Veterinary Science, University of Murcia
2Agrovin

Contact the author

Keywords

Ultrasound, Chromatics, Polyphenols, Maceration, Grape varieties

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

The sensitivity to ABA affects the cross-talk between scion/rootstock in tolerant grapevines to drought stress

Drought caused by climate change has a dramatic incidence on the vineyard. Despite employing specific rootstocks tolerant to drought like 110 Richter, the vineyard continues to experience various losses, revealing the importance of the scion cultivar in the adaptation to drought stress. In this regard, Merlot, a widely cultivated grapevine, exhibited reduced drought tolerance compared to less cultivated varieties like Callet, a local cultivar originating from the Balearic Islands that demonstrated greater resilience to drought. Therefore, understanding the drought stress response in both cultivars and the cross-talk between scion and rootstock is key to unveiling possible differences that could affect to the adaptation to drought in vineyard.

Caractérisation des productions vitivinicoles des terroirs du Barolo (Piemonte, Italie)

La Région Piemonte a commencé en 1994 un projet de caractérisation des productions vitivinicoles des terroirs du Barolo (Piemonte, Italie) par une équipe pluridisciplinaire avec la participation de 6 Instituts de recherche qui travaillent dans la Région et la collaboration de 2 Associations des producteurs viticoles et des organismes de valorisation du vin Barolo.

Main viticultural soils in Castilla – La Mancha (Spain)

Castilla-La Mancha is the biggest vineyard in the world. Once similar soils have been identified in Castilla-La Mancha (soil

Analysis of climatic changes in different areas of Abruzzo region (Central Italy): implications for grape growing

The dynamic evolution of some bioclimatic indices largely used to define the vocation of areas to grape growing was assessed over 43 years (1965-2007) in four sites of the Abruzzo Region (Central Italy).

From local classification to regional zoning. The use of a geographic information system (GIS) in Franconia / Germany. Part 3: classification of soil parameters in vineyards

La conservation de la fertilité du sol est un aspect primordial dans la viticulture durable. Différents paramètres, comme par exemple la topographie, la composition du sol, les conditions climatiques, influencent la fertilité du sol des surfaces viticoes.