IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Exploring and unravelling the complex toasted oak wood (Q. sp.) volatilome using GCxGC-TOFMS technique

Exploring and unravelling the complex toasted oak wood (Q. sp.) volatilome using GCxGC-TOFMS technique

Abstract

For coopers, toasting process is considered as a crucial step in barrel production where oak wood develops several specific aromatic nuances released to the wine during its maturation. Toasting is applying varying degrees of heat to a barrel over a specific amount of time. Today it is well known that as the temperature increases, thermal degradation of oak wood structure produces a huge range of chemical compounds. Indeed, many works were conducted to identify key aroma volatile compounds (e.g., whisky-lactone, furfural, maltol, eugenol, guaiacol, vanillin) using the traditional gas chromatography coupled with olfactometry and mass spectrometry (GC-O-MS).

Inspired by recent untargeted approaches in food “omics”, this work aims at expanding our knowledge on oak wood volatile composition by bi-dimensional comprehensive gas chromatography-time of flight mass spectrometry (GCxGC-TOFMS, BT4D, Leco).

In a first experiment, five toasting levels were selected and applied to Q. sessilis oak wood samples (control, 160 °C, 180 °C, 200 °C and 220 °C, 30 min, n=3). Organic extracts were prepared (dichloromethane, 50 g/L) and analysed by GCxGC-TOFMS on conventional column combination nonpolar/midpolar (DB-5ms/Rxi-17Sil). The separation was followed by a non-targeted approach for data processing. The resulting mass spectra (TIC) were de convoluted (ChromaTOF software) and compared to spectra from a database for tentative peak identification. It was necessary to restrict the number of processed peaks by applying some “filters” such as signal to noise (S/N > 50), linear retention index (LRI ± 30), mass spectra similarity (> 750) and repeatability level. Supervised multivariate and univariate statistical approaches were used to identify potential markers of toasting intensity. Thanks to R script, reproducible peaks number was reduced from about 15000 to 568. By comparing observed retention indices with those found in the literature, 77 of the identifications have been confirmed and associated with an increase in toasting intensity. Some of them were sensory active and well known in oak wood, such as guaiacol, creosol and isoeugenol. Others were identified for the first time in toasted oak wood such as 2-methylbenzofurane (burnt) and 2-hydroxy-2-cyclopenten-1-one (caramel).Additional results were also discussed on the capability of GCxGC-TOFMS to identify oak wood botanic origins (Q. robur, Q. alba

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Courregelongue Marie1,², Albertin Warren1,³, Prida Andrei2 and Pons Alexandre1,²

¹UMR ŒNOLOGIE (OENO), ISVV, UMR 1366, Université de Bordeaux, INRAE, Bordeaux INP
²Tonnellerie Seguin Moreau, Merpins, France
³ENSCBP, Bordeaux INP, 33600, Pessac, France

Contact the author

Keywords

non-targeted analysis, GCxGC-TOFMS, oak wood, toasting process, volatile compounds

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Grape seed flavanols extraction and mechanical-acoustic properties as influenced by maceration time and ethanol content

AIM: Grape flavanols are involved in wine quality markers such as in-mouth sensations and colour stability.

Malolactic fermentation in wine production

What influence do these bacteria have on wines? What new bacteria are being studied to carry out this fermentation? Find below articles about malolactic fermentation published in our 3 media (OENO One, IVES Technical Reviews and IVES Conference Series). OENO One...

Prediction of sauvignon blanc quality gradings with static headspace−gas chromatography−ion mobility spectrometry (SHS−GC−IMS) and machine learning

The main goal of the current study is the development of a cost-effective and easy-to-use method suitable for use in the laboratory of commercial wineries to analyze wine aroma. Additionally, this study attempted to establish a prediction model for wine quality gradings based on their aroma, which could reveal the important aroma compounds that correlate well with different grades of perceived quality METHODS: Parameters of the SHS−GC−IMS instrument were first optimized to acquire the most desirable chromatographic resolution and signal intensities. Method stability was then exhibited by repeatability and reproducibility. Subsequently, compound identification was conducted. After method development, a total of 143 end-ferment wine samples of three different quality gradings from vintage 2020 were analyzed with the SHS−GC−IMS instrument. Six machine learning methods were employed to process the results and construct a quality prediction model. Techniques that aim to explain the model to extract useful insights were also applied.

Enhancement of the terroir

The terroir is today the most important factor of production and development in the wine sector. In a context where the commercial challenge is taking place all over the place, the distinction between traditional and “new” producing countries is not only a geographical, cultural and technical counter position but also, and above all, a legal one. Indeed, the system of standards present in the “old world” (plantation rights, production decrees, yields per hectare, etc.) which may represent, in the short term on the global market, constraints to development and product innovation must become an opportunity. But threats become opportunities, if we work, from the vine to the market, via communication, more on the elements of difference than on those of affinity.

Litchi tomato as a fumigation alternative in Washington state wine grape vineyards

The northern root-knot nematode (Meloidogyne hapla) is one of the most prevalent plant-parasitic nematodes affecting Washington State Vitis vinifera vineyards. This nematode induces small galls on roots, restricting water and nutrient uptake. In new vineyards this can impede establishment. In existing vineyards, it can exacerbate decline in chronically stressed vines. While preplant fumigation is a common strategy for M. hapla management, its efficacy is temporary and relies on broad-spectrum chemicals that undergo frequent regulatory scrutiny. The trap crop litchi tomato (Solanum sisymbriifolium) showed promise in reducing plant-parasitic nematode densities in potato. This prompted field greenhouse experiments to evaluate its potential to reduce M. hapla in V. vinifera.