IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Exploring and unravelling the complex toasted oak wood (Q. sp.) volatilome using GCxGC-TOFMS technique

Exploring and unravelling the complex toasted oak wood (Q. sp.) volatilome using GCxGC-TOFMS technique

Abstract

For coopers, toasting process is considered as a crucial step in barrel production where oak wood develops several specific aromatic nuances released to the wine during its maturation. Toasting is applying varying degrees of heat to a barrel over a specific amount of time. Today it is well known that as the temperature increases, thermal degradation of oak wood structure produces a huge range of chemical compounds. Indeed, many works were conducted to identify key aroma volatile compounds (e.g., whisky-lactone, furfural, maltol, eugenol, guaiacol, vanillin) using the traditional gas chromatography coupled with olfactometry and mass spectrometry (GC-O-MS).

Inspired by recent untargeted approaches in food “omics”, this work aims at expanding our knowledge on oak wood volatile composition by bi-dimensional comprehensive gas chromatography-time of flight mass spectrometry (GCxGC-TOFMS, BT4D, Leco).

In a first experiment, five toasting levels were selected and applied to Q. sessilis oak wood samples (control, 160 °C, 180 °C, 200 °C and 220 °C, 30 min, n=3). Organic extracts were prepared (dichloromethane, 50 g/L) and analysed by GCxGC-TOFMS on conventional column combination nonpolar/midpolar (DB-5ms/Rxi-17Sil). The separation was followed by a non-targeted approach for data processing. The resulting mass spectra (TIC) were de convoluted (ChromaTOF software) and compared to spectra from a database for tentative peak identification. It was necessary to restrict the number of processed peaks by applying some “filters” such as signal to noise (S/N > 50), linear retention index (LRI ± 30), mass spectra similarity (> 750) and repeatability level. Supervised multivariate and univariate statistical approaches were used to identify potential markers of toasting intensity. Thanks to R script, reproducible peaks number was reduced from about 15000 to 568. By comparing observed retention indices with those found in the literature, 77 of the identifications have been confirmed and associated with an increase in toasting intensity. Some of them were sensory active and well known in oak wood, such as guaiacol, creosol and isoeugenol. Others were identified for the first time in toasted oak wood such as 2-methylbenzofurane (burnt) and 2-hydroxy-2-cyclopenten-1-one (caramel).Additional results were also discussed on the capability of GCxGC-TOFMS to identify oak wood botanic origins (Q. robur, Q. alba

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Courregelongue Marie1,², Albertin Warren1,³, Prida Andrei2 and Pons Alexandre1,²

¹UMR ŒNOLOGIE (OENO), ISVV, UMR 1366, Université de Bordeaux, INRAE, Bordeaux INP
²Tonnellerie Seguin Moreau, Merpins, France
³ENSCBP, Bordeaux INP, 33600, Pessac, France

Contact the author

Keywords

non-targeted analysis, GCxGC-TOFMS, oak wood, toasting process, volatile compounds

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Technical efficiency and socio-environmental sustainability in the wine sector: tradeoff or complementarity? Evidence from Italy

In recent decades, sustainability has risen to prominence across various industries, including agriculture, spurred by initiatives such as the new common agricultural policy and the farm to fork strategy within the European Union. Among agricultural activities, viticulture stands as a crucial player in sustainability, intertwining environmental, social, and economic dimensions, as exemplified by the OIV general principles of sustainable viticulture. Italy, one of the main players in the global wine market, has long been making efforts towards the introduction of sustainability-oriented practices and certifications.

Investigating the role of endophytes in enhancing grapevine resilience to drought

Grapevine is a crop of great economic importance for several countries. The intensification of grapevine production has mostly been sustained by the increasing use of water resources at the expense of the environmental water balance. Moreover, in the last decades, climate change and the consequent expansion of drought have further compromised water availability, making current agricultural systems even more fragile both ecologically and economically. Recently, many research groups have highlighted the important role of endophytes in facilitating plant growth under optimal or stressful conditions. Within the framework of the PRIMA project, we aim to investigate the possible exploitation of the natural endophyte biodiversity as a sustainable tool to make grapevine plants more resilient to water deficit environmental conditions.

Grapevine responses to red blotch disease – a structural-functional perspective of symptomatology development and fruit quality

Red Blotch disease caused by Grapevine red blotch-associated virus (GRBaV) is a severe concern to grape growers and winemakers in major grape-growing regions worldwide. One key aspect of all viruses, including Red Blotch, is their intimate association with cell components and anomalous structures following infection. Therefore, the objective of this study was to analyze symptomatology, vine function, fruit quality and ultrastructure of various tissues and document the relationship of ultrastructural cytopathology with the GRBaV infection in Pinot Noir and Merlot employing various microscopy techniques.

Impact of SO2 addition before alcoholic fermentation on the oxidative stability of Chardonnay white wines

Sulfites (SO2) addition during winemaking is a widespread practice worldwide. This addition is realized at different steps of the winemaking due to the antimicrobial and antioxidant capacity of SO2. In a context of understanding white wines oxidative stability, knowledge about the impact of SO2 on the wine molecular diversity, especially compounds involved in the antioxidant capacity of wine, appears to be very important. In recent years, some studies have shown that SO2 can react with a large number of wine compounds resulting in the formation of numerous adducts. The diversity of compounds involved is important including in particular pyruvic acid, 2-keto-glutaric acid, glyceraldehyde, sugar, phenolics compounds but also amino acids or peptides. Moreover Roullier-Gall et al. have shown using FT-ICR-MS analysis that the molecular composition of wines remains impacted by addition of SO2 to the must (0, 4 and 8 g/hL SO2), several years after winemaking. Indeed, wines made from protected must (8g/hL SO2) contain a larger diversity of CHOS and CHONS compounds than wines made from unprotected must (0 g/hL SO2). The study of the impact of glutathione addition on the sensory oxidative stability has further shown that CHOS and CHONS compounds (amino acids, aromatic compounds and peptides) are markers of the antioxidant metabolome of white wines. This suggests that CHOS and CHONS compounds arise from SO2 adducts formation but also from a protecting effect of SO2 on the antioxidant metabolome of white wines.

Assessment of climate change impacts on water needs and growing cycle on grapevine in three DOs of NE Spain

This study assessed the suitability of grapevine growing in three DOs (Empordà, Pla de Bages and Penedès) of Catalonia (NE Spain) over the 21st century. For this purpose, an estimation of water needs and agroclimatic and phenological indicators was made. Climate change impacts were estimated at 1 km pixel resolution using temperature and precipitation projections from several general circulation models (GCM) and two climate change scenarios: RCP 4.5 (stabilization scenario) and RCP 8.5 (worst-case scenario). Potential crop evapotranspiration (following FAO procedure) and a daily water balance considering soil water holding capacity were used to estimate actual evapotranspiration of vines and, finally, water needs. Dynamics would be similar in the three DOs studied although the magnitude of impact differs. Water needs would be 2 and 3 times greater (ranging from 0 to more than 1500 m3/ha) than current water needs at both climate change scenarios. Moreover, blooming date would advance from 3 to 6 weeks, harvest date from 1 to 2.5 months, resulting in growing cycles from 10 to 80 days shorter. It should also be noted that frost risk would decrease from 6 to 76%, the number of days with temperatures above 30ºC during ripening would rise from 48 to 500% and tropical nights (minimum temperature >20ºC) at ripening would increase from 28 to 150%, depending on the scenario and the DOs. The impacts of climate change in the three DOs could result in significant limitations for grapevine cultivation and wine production if adaptive strategies are not applied. This result could serve as a basis for the design of specific and particular adaptation strategies to improve and maintain vineyards in the DOs studied and could be extrapolated to similar DOs and regions.