IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Exploring and unravelling the complex toasted oak wood (Q. sp.) volatilome using GCxGC-TOFMS technique

Exploring and unravelling the complex toasted oak wood (Q. sp.) volatilome using GCxGC-TOFMS technique

Abstract

For coopers, toasting process is considered as a crucial step in barrel production where oak wood develops several specific aromatic nuances released to the wine during its maturation. Toasting is applying varying degrees of heat to a barrel over a specific amount of time. Today it is well known that as the temperature increases, thermal degradation of oak wood structure produces a huge range of chemical compounds. Indeed, many works were conducted to identify key aroma volatile compounds (e.g., whisky-lactone, furfural, maltol, eugenol, guaiacol, vanillin) using the traditional gas chromatography coupled with olfactometry and mass spectrometry (GC-O-MS).

Inspired by recent untargeted approaches in food “omics”, this work aims at expanding our knowledge on oak wood volatile composition by bi-dimensional comprehensive gas chromatography-time of flight mass spectrometry (GCxGC-TOFMS, BT4D, Leco).

In a first experiment, five toasting levels were selected and applied to Q. sessilis oak wood samples (control, 160 °C, 180 °C, 200 °C and 220 °C, 30 min, n=3). Organic extracts were prepared (dichloromethane, 50 g/L) and analysed by GCxGC-TOFMS on conventional column combination nonpolar/midpolar (DB-5ms/Rxi-17Sil). The separation was followed by a non-targeted approach for data processing. The resulting mass spectra (TIC) were de convoluted (ChromaTOF software) and compared to spectra from a database for tentative peak identification. It was necessary to restrict the number of processed peaks by applying some “filters” such as signal to noise (S/N > 50), linear retention index (LRI ± 30), mass spectra similarity (> 750) and repeatability level. Supervised multivariate and univariate statistical approaches were used to identify potential markers of toasting intensity. Thanks to R script, reproducible peaks number was reduced from about 15000 to 568. By comparing observed retention indices with those found in the literature, 77 of the identifications have been confirmed and associated with an increase in toasting intensity. Some of them were sensory active and well known in oak wood, such as guaiacol, creosol and isoeugenol. Others were identified for the first time in toasted oak wood such as 2-methylbenzofurane (burnt) and 2-hydroxy-2-cyclopenten-1-one (caramel).Additional results were also discussed on the capability of GCxGC-TOFMS to identify oak wood botanic origins (Q. robur, Q. alba

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Courregelongue Marie1,², Albertin Warren1,³, Prida Andrei2 and Pons Alexandre1,²

¹UMR ŒNOLOGIE (OENO), ISVV, UMR 1366, Université de Bordeaux, INRAE, Bordeaux INP
²Tonnellerie Seguin Moreau, Merpins, France
³ENSCBP, Bordeaux INP, 33600, Pessac, France

Contact the author

Keywords

non-targeted analysis, GCxGC-TOFMS, oak wood, toasting process, volatile compounds

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Variety specific thresholds for plant-based indicators of vine nitrogen status

Aim: Several plant-based indicators of vine N status are reported in the literature. Among these, yeast assimilable nitrogen in grape must (YAN) and total N concentration of petiole and leaf blades are considered to be reliable indicators and so is the chlorophyll index, measured with a device called N-tester. The N-tester index is used to measure the intensity of the green colour of the leaf blade, and therefore to estimate its chlorophyll content.

Transcriptomic and metabolomic responses to wounding and grafting in grapevine

Grafting plants uses intrinsic healing processes to join two different plants together to create one functional organism. To further our understanding of the molecular changes occurring during graft union formation in grapevine, we characterized the metabolome and transcriptome of intact and wounded cuttings (with and without buds to represent scions and rootstocks respectively), and homo- and heterografts at 0 and 14 days after wounding/grafting. As over-wintering, dormant plant material was grafted, we also characterized the gene expression changes in the wood during bud burst and spring activation of growth. We observed an asymmetrical pattern of gene expression between above and below the graft interface, auxin and sugar related genes were up-regulated above the graft interface, while genes involved in stress responses were up-regulated below the graft interface.

Bioprotection and oenological tannins association to protect Rosé wine color

The bioprotection of musts or grapes is a strategy for limiting sulfiting during winemaking and more specifically at pre-fermentative step. The most preconized yeasts in bioprotection mainly belong to Metschnikowia pulcherrima and Torulaspora delbrueckii species. While previous studies have demonstrated that bioprotectant non-Saccharomyces strains were able to protect musts and wines against microbial spoilage as well as sulfites, they cannot protect must against oxidation which appears to be the main limit of this practice.

Aromatic complexity in Verdicchio wines: a case study

In this video recording of the IVES science meeting 2021, Fulvio Mattivi (Fondazione Edmund Mach, Centro Ricerca ed Innovazione, San Michele all’Adige, Italy) speaks about the effects of water deficit on secondary metabolites in grapes and wines. This presentation is based on an original article accessible for free on OENO One.

Correction de la teneur en alcool des vins par évaporation partielle sous vide en cours de fermentation alcoolique

Climate change has become a reality that is becoming more and more apparent every day, with changes in the physico-chemical composition of grapes and an increase in the alcohol content of finished wines. These higher alcoholic degrees are not without consequences for the success of alcoholic and malolactic fermentation. Correcting the alcohol content (-20% of the initial alcoholic strength) is also part of an approach designed to meet consumer expectations for healthier, lighter or lower-alcohol wines (9 to 13% vol.). Correcting the alcohol content of wines also rebalances the mouthfeel by reducing the alcohol’s burn.