IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 NADES extraction of anthocyanins derivatives from grape pomace

NADES extraction of anthocyanins derivatives from grape pomace

Abstract

Grape pomace is one of the main by-products generated after pressing in wine-making. It’s valorization through the extraction of bioactive compounds is the answer for the development of sustainable processes. Nevertheless, in the recovery of anthocyanins derivatives, the extraction stage continues to be a limiting step. The nature of the sample and the type of solvent determine the efficiency of the process. Anthocyanins are responsible for the color of grapes and wine, a characteristic that is defined by their chemical structure. The color stability in their native form is affected by factors such as pH, temperature, and their chemical structure, which could limit their use as a natural colorant in the food industry. However, there are anthocyanin-derived pigments found in wines. The main interest in these pigments is that they present greater color stability against pH changes and SO2 bleaching than native anthocyanin. Emerging methods such as ultrasound-assisted eutectic mixture extraction have a high potential due to the low toxicity, chemical inertness with water, easy preparation, and huge biodegradability. There are four types of eutectic solvents, however, the mixtures that are formed from salt and a natural component such as alcohols, sugars, and organic acids are the most used in the extraction processes of bioactive compounds. The compounds were mixed with a 1:1 molar ratio with choline chloride (ChCl) as hydrogen bond acceptor (HBA) and its corresponding hydrogen bond donor (HBD) (malic acid, citric acid, tartaric acid, glucose and glycerol: urea), heated at a constant temperature of 80 °C and stirring at 700 rpm until a transparent liquid was obtained. Then the volume of distilled water corresponding to each mixture (30 % v / v) was added. The extraction was carried out in an ultrasonic bath at room temperature for 45 min. A solid-liquid ratio of 1 g of pomace per 10 ml of solvent was used. Total anthocyanins were determined using the differential pH method measured by a spectrophotometer. The highest extraction using NADES corresponds to the mixtures composed of choline chloride: glucose and choline chloride: urea: glycerol reaching a value of 4.57 and 4.36 mg eq of malvidin-3-O-glucoside /g of grape pomace respectively. On the other hand, no significant differences were found for a value of p≤0.05 between the mixtures containing citric acid and tartaric acid, obtaining values of 0.81 and 0.69 mg eq of malvidin -3-O-glucoside /g grape pomace respectively. Although it is known that anthocyanins are more stable in acidic media, the extraction values obtained for mixtures with acids were lower than expected

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Salas Erika¹, Castellanos-Gallo Lilisbet¹, Ballinas-Casarrubias Lourdes1, Espinoza-Hicks José Carlos¹and Hernández-Ochoa León¹

¹Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua

Contact the author

Keywords

grape pomace, extraction, anthocyanins derivatives, natural deep eutectic solvent (NADES)

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Role of PH and its management during vinification on the extraction during maceration and on the evolution during ageing of the phenolic compounda of red wine

Climatic changes cause significant variations in the composition of grapes. for red grapes, a mismatch between phenolic and technological ripening is often observed. There is also often a marked increase in pH and a reduction in fixed acids, which affect the stability and evolution of the wine during ageing. These experiments will provide more information on the role of pH during the winemaking of red wines on the extraction and evolution of phenolic compounds.

Sensory profile: a tool to characterize originality of wines produced without sulfites

A trend to reduce chemical inputs in wines exists, especially sulfur dioxide (SO2). This additive is widely used due to its antioxidant, antiseptic and antioxidasic properties. During without sulfites vinification, bioprotection by adding yeast on harvest could be a sulfites alternative. With extension of this wine market, sensory impact linked to sulfites absence and/or sulfites alternative should be evaluated. That’s what this approach proposes to do, focusing on sensory characteristics of wines produced with or without SO2 addition during the winemaking process. METHODS: Wines were elaborated from Merlot grapes of two maturity levels according to three modalities: SO2, without SO2 and bioprotection on harvest (mix of Torulaspora delbrueckii and Metschnikowia pulcherrima). SO2 modality was sulfited throughout the winemaking and aging processes whether other modalities received any addition. After two years of aging, sensory studies were carried out with a specific panel for one month. First, descriptors were generated to differentiate the wines, then panelists were trained on these specific descriptors for five sessions and finally wines sensory profiles were elaborated

Use of microorganisms in the disinfection/protection of organic rooted-cuttings from wood pathogens

One of the major problems affecting the viticulture sector is the quantity of plant protection products (especially copper) used to control the main foliar diseases of the vine. The Life Green Grapes project enter in the production context with the aim of reducing the use of fungicides throughout

Plant nitrogen assimilation and partitioning as a function of crop load

Aims: The optimization of nitrogen use efficiency (NUE, i.e. uptake, assimilation and partitioning) is a solution towards the sustainable production of premium wines, while reducing fertilization and environmental impact. The influence of crop load on the accumulation of N compounds in fruits is still poorly understood. The present study assesses the impacts of bunch thinning on NUE and the consequences on the free amino N (FAN) profile in fruits.

Wine microbial diversity and cross-over applications: emerging results and future perspectives

AIM: Cross-over applications are an emerging technological approach in food microbiology where a microorganism from one traditional specific fermentation process is used to improve quality and safety in another agri-food production/chain (Dank et al., 2021). A complex microbial diversity is found in association with fermentation in wine, including Saccharomyces, non-Saccharomyces and malolactic bacteria,  all microorganisms versatile in terms of enological utilisation (Tempère et al., 2018). Here, we propose a systematic literature review highlighting the existing trends and possible future applications related to cross-over exploitation of wine-related microbiota.