IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 NADES extraction of anthocyanins derivatives from grape pomace

NADES extraction of anthocyanins derivatives from grape pomace

Abstract

Grape pomace is one of the main by-products generated after pressing in wine-making. It’s valorization through the extraction of bioactive compounds is the answer for the development of sustainable processes. Nevertheless, in the recovery of anthocyanins derivatives, the extraction stage continues to be a limiting step. The nature of the sample and the type of solvent determine the efficiency of the process. Anthocyanins are responsible for the color of grapes and wine, a characteristic that is defined by their chemical structure. The color stability in their native form is affected by factors such as pH, temperature, and their chemical structure, which could limit their use as a natural colorant in the food industry. However, there are anthocyanin-derived pigments found in wines. The main interest in these pigments is that they present greater color stability against pH changes and SO2 bleaching than native anthocyanin. Emerging methods such as ultrasound-assisted eutectic mixture extraction have a high potential due to the low toxicity, chemical inertness with water, easy preparation, and huge biodegradability. There are four types of eutectic solvents, however, the mixtures that are formed from salt and a natural component such as alcohols, sugars, and organic acids are the most used in the extraction processes of bioactive compounds. The compounds were mixed with a 1:1 molar ratio with choline chloride (ChCl) as hydrogen bond acceptor (HBA) and its corresponding hydrogen bond donor (HBD) (malic acid, citric acid, tartaric acid, glucose and glycerol: urea), heated at a constant temperature of 80 °C and stirring at 700 rpm until a transparent liquid was obtained. Then the volume of distilled water corresponding to each mixture (30 % v / v) was added. The extraction was carried out in an ultrasonic bath at room temperature for 45 min. A solid-liquid ratio of 1 g of pomace per 10 ml of solvent was used. Total anthocyanins were determined using the differential pH method measured by a spectrophotometer. The highest extraction using NADES corresponds to the mixtures composed of choline chloride: glucose and choline chloride: urea: glycerol reaching a value of 4.57 and 4.36 mg eq of malvidin-3-O-glucoside /g of grape pomace respectively. On the other hand, no significant differences were found for a value of p≤0.05 between the mixtures containing citric acid and tartaric acid, obtaining values of 0.81 and 0.69 mg eq of malvidin -3-O-glucoside /g grape pomace respectively. Although it is known that anthocyanins are more stable in acidic media, the extraction values obtained for mixtures with acids were lower than expected

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Salas Erika¹, Castellanos-Gallo Lilisbet¹, Ballinas-Casarrubias Lourdes1, Espinoza-Hicks José Carlos¹and Hernández-Ochoa León¹

¹Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua

Contact the author

Keywords

grape pomace, extraction, anthocyanins derivatives, natural deep eutectic solvent (NADES)

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Optimizing stomatal traits for future climates

Stomatal traits determine grapevine water use, carbon supply, and water stress, which directly impact yield and berry chemistry. Breeding for stomatal traits has the strong potential to improve grapevine performance under future, drier conditions, but the trait values that breeders should target are unknown. We used a functional-structural plant model developed for grapevine (HydroShoot) to determine how stomatal traits impact canopy gas exchange, water potential, and temperature under historical and future conditions in high-quality and hot-climate California wine regions (Napa and the Central Valley). Historical climate (1990-2010) was collected from weather stations and future climate (2079-99) was projected from 4 representative climate models for California, assuming medium- and high-emissions (RCP 4.5 and 8.5). Five trait parameterizations, representing mean and extreme values for the maximum stomatal conductance (gmax) and leaf water potential threshold for stomatal closure (Ψsc), were defined from meta-analyses. Compared to mean trait values, the water-spending extremes (highest gmax or most negative Ysc) had negligible benefits for carbon gain and canopy cooling, but exacerbated vine water use and stress, for both sites and climate scenarios. These traits increased cumulative transpiration by 8 – 17%, changed cumulative carbon gain by -4 – 3%, and reduced minimum water potentials by 10 – 18%. Conversely, the water-saving extremes (lowest gmax or least negative Ψsc) strongly reduced water use and stress, but potentially compromised the carbon supply for ripening. Under RCP 8.5 conditions, these traits reduced transpiration by 22 – 35% and carbon gain by 9 – 16% and increased minimum water potentials by 20 – 28%, compared to mean values. Overall, selecting for more water-saving stomatal traits could improve water-use efficiency and avoid the detrimental effects of highly negative canopy water potentials on yield and quality, but more work is needed to evaluate whether these benefits outweigh the consequences of minor declines in carbon gain for fruit production.

Evaluation of shelf life of white wines in aluminium bottle: a modelling approach

Aluminum is a particularly interesting material for packaging because it is environmentally sustainable, lighter than standard glass bottles, and protective against light radiation [1].

A comparative analysis of regions worldwide with Pinot noir

This study examines the growing season climates of selected wine regions worldwide that have significant areas under Pinot noir.

Assessment of O2 consumption, a new tool to select bioprotection yeast strains

Reduction of sulfur dioxide during winemaking is a request from the wine industry. To replace sulfur dioxide, various alternatives exist, including bioprotection by yeast inoculation. This practice consists in adding non-Saccharomyces yeasts directly on the grapes or must.

Biosynthetic evolution of galloilated polyphenols in Tannat grapes during ripening, potential applications of grape thinning

Galloylated flavan-3-ols are a class of polyphenolic compounds present in various plants, including grape seeds. These compounds are formed through the condensation of flavan-3-ols, such as catechins, although the precise mechanism by which gallic acid is incorporated into the molecule remains unclear.