IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 NADES extraction of anthocyanins derivatives from grape pomace

NADES extraction of anthocyanins derivatives from grape pomace

Abstract

Grape pomace is one of the main by-products generated after pressing in wine-making. It’s valorization through the extraction of bioactive compounds is the answer for the development of sustainable processes. Nevertheless, in the recovery of anthocyanins derivatives, the extraction stage continues to be a limiting step. The nature of the sample and the type of solvent determine the efficiency of the process. Anthocyanins are responsible for the color of grapes and wine, a characteristic that is defined by their chemical structure. The color stability in their native form is affected by factors such as pH, temperature, and their chemical structure, which could limit their use as a natural colorant in the food industry. However, there are anthocyanin-derived pigments found in wines. The main interest in these pigments is that they present greater color stability against pH changes and SO2 bleaching than native anthocyanin. Emerging methods such as ultrasound-assisted eutectic mixture extraction have a high potential due to the low toxicity, chemical inertness with water, easy preparation, and huge biodegradability. There are four types of eutectic solvents, however, the mixtures that are formed from salt and a natural component such as alcohols, sugars, and organic acids are the most used in the extraction processes of bioactive compounds. The compounds were mixed with a 1:1 molar ratio with choline chloride (ChCl) as hydrogen bond acceptor (HBA) and its corresponding hydrogen bond donor (HBD) (malic acid, citric acid, tartaric acid, glucose and glycerol: urea), heated at a constant temperature of 80 °C and stirring at 700 rpm until a transparent liquid was obtained. Then the volume of distilled water corresponding to each mixture (30 % v / v) was added. The extraction was carried out in an ultrasonic bath at room temperature for 45 min. A solid-liquid ratio of 1 g of pomace per 10 ml of solvent was used. Total anthocyanins were determined using the differential pH method measured by a spectrophotometer. The highest extraction using NADES corresponds to the mixtures composed of choline chloride: glucose and choline chloride: urea: glycerol reaching a value of 4.57 and 4.36 mg eq of malvidin-3-O-glucoside /g of grape pomace respectively. On the other hand, no significant differences were found for a value of p≤0.05 between the mixtures containing citric acid and tartaric acid, obtaining values of 0.81 and 0.69 mg eq of malvidin -3-O-glucoside /g grape pomace respectively. Although it is known that anthocyanins are more stable in acidic media, the extraction values obtained for mixtures with acids were lower than expected

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Salas Erika¹, Castellanos-Gallo Lilisbet¹, Ballinas-Casarrubias Lourdes1, Espinoza-Hicks José Carlos¹and Hernández-Ochoa León¹

¹Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua

Contact the author

Keywords

grape pomace, extraction, anthocyanins derivatives, natural deep eutectic solvent (NADES)

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Sardinia terroir and Cannonau: a zoning approach to discover an ancient tradition

Cannonau variety is historically grown in a large Sardinia area (Jerzu district) and the vineyards are planted both in the plane and in the sloped hills reaching also 650 m of altitude a.s.l. Thus, in order to discover how climate, soil diversity and growing traditions could account for differences in grape and wine quality, this trial was carried out.

Factors affecting flavonols instability of red wines due to climate change

Due to varietal factors, the formation of undesirable deposits of flavonols, especially quercetin (Q), occurs in several red wines.

Iso-/anisohydric behavior in wine grapes may be a matter of soil moisture

There are claims that wine grape cultivars are either isohydric or anisohydric; the former maintaining, and the latter decreasing, their plant water status as soil moisture declines. However, available information is inconsistent. There are those that show an existence of a continuum in cultivar response to soil moisture rather than a distinct categorization. Others even show both behaviors in the same cultivar grown in different environments. In this study we investigated the behavior of 30 own rooted Vitis vinifera cultivars during successive drydown and rewatering cycles over two growing seasons in arid eastern Washington (<200 mm annual precipitation).

Evaluation of the sensory profile of doc douro red wines through sensory traditional single-point techniques and temporal dominance methods

No other agricultural product has a stronger relationship with the soil than wine. This study aimed to characterize the sensory profile of red wines from the Douro Demarcated Region (RDD) certified as DOC Douro, through the application of Quantitative Descriptive Analysis (QDA®) and Temporal Dominance of Sensations (TDS) sensory methods. QDA® provides a complete word description for all a product’s sensory properties. The TDS, which is relatively recent in the sensory field [1], allows to evaluation and description of the evolution of the dominant sensory perceptions during the tasting of a food product.Eighteen commercial wines from different producers were evaluated, six different samples representing each of the three sub-regions of the RDD.

Mineral-wine profile and AI: wine authentication and identification

Enhancing the mineral wine profile: from authentication to identification by artificial intelligence for enhanced security. Analysis of a wine’s mineral concentration profile provides a distinctive fingerprint for each cuvée. Unlike organic profiles, this identification signature remains stable over time and can be deciphered using direct analysis by inductively coupled mass spectrometry (icp-ms).