IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Sensory and chemical profiles of Cabernet Sauvignon wines exposed to different irrigation regimes during heatwaves

Sensory and chemical profiles of Cabernet Sauvignon wines exposed to different irrigation regimes during heatwaves

Abstract

Heatwaves, defined as three or more consecutive days above average historical maximum temperatures, are having a significant impact on agricultural crop yields and quality, especially in arid or semi-arid regions with reduced water availability during the growing season. In grapevine, excessive heat can lead to not only crop loss, but a reduction in quality of the berries and resulting wine. The primary means of mitigating damage due to heatwaves is by applying excess irrigation water prior to and during the heatwave event, thus promoting evaporative cooling by the plant and reducing soil temperatures in the rooting zone and surface.  California wine-growing regions, among others, face a future of
decreased water availability, combined with increases in heatwave incidence, frequency, and intensity. Thus, we will require a greater understanding of the effects of heatwaves and water use at different times during development on grapevine physiology, berry composition, and wine chemistry and quality. In this study we evaluated the impact of different pre-heat wave irrigation practices on vine physiology and berry composition across the 2019 growing season in a commercial Cabernet Sauvignon vineyard in the Northern Central Valley of California, USA (Lodi, CA). Differential irrigation treatments were applied only when a heat event took place and started one or two days before each heatwave and continued until the last day of the heat event. Three irrigation treatments were implemented: a control or baseline, which was exposed to deficit irrigation and held at 60% ET, a second treatment where the irrigation was double the baseline  (2x baseline ET), and third treatment with triple the amount of water of the baseline (3x baseline ET). Replicated wine lots were fermented from each treatment following a standard red wine fermentation protocol. A trained panel characterized  sensorially the aroma and flavor profiles of the wines. Moreover, the wines’ volatile and phenolic profiles were analyzed and correlated to the sensory. 

We found that plants were able to recover from physiological stress caused by heat events but had a negative impact on berry biochemical traits. Negative effects on berry chemistry resulted from over and underwatering during heat waves. The sensory results showed how the differences found in treatments from a physiological and berry chemistry perspective are translated to the wines’ sensory properties and chemical characteristics

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Cantu Annegret¹, Heymann Hildegarde¹, Campbell James¹, Galeano Martina¹, Sanchez Luis ², Dokoozlian Nicolas², Webley AD¹, Lerno L.¹, Ebler SE ¹,McElrone Andrew J.³, Bagshaw Sophia¹and Forrestel Elisabeth J.¹

¹Department of Viticulture and Enology, University of California Davis
²​E.&J. Gallo Winery
³USDA, Davis, California

Contact the author

Keywords

heatwaves, irrigation, cabernet sauvignon, wine chemical characteristics, sensory analysis

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

The influence of culture medium on the dynamics of fermentation of wine yeasts

Wine yeast strains Saccharomyces ellipsoideus have important applications in food industry and in this regard is sought isolation as pure cultures and selecting those strains, which in laboratory investigations which have great biotechnological properties This study was intended as the ratio of live cells and autolysates cells also the influence of culture medium on this report. Yeasts selected for this study were isolated from industrial strains of indigenous grape varieties, namely: Feteasca Royal (FR) Feteasca White (FA), black Feteasca (FN), Romanian Tamaioasa (TR), Babeasca Black (BN) and Cotnari Grasa (GC).

Withering of the ‘Moscato giallo’ grapes under covered space

For the purpose of producing predicate wines in northern part of Croatia, grapes are traditionally left on the vine unpicked. However, grapes on the vine are exposed to unfavorable environmental conditions that affect rapid rotting and attacked by birds. To eliminate the mentioned risks, the grapes can be picked and placed in a protected space (loft, greenhouse, etc.) suitable for drying. This study presents the results of research on withering grapes of the ‘Moscato giallo’ variety in two tretment: sun drying (under covered terrace) and drying in the shade (loft). The following quality parameters were monitored: mass of grapes, sugar concentration, content of total acids, pH, content of organic acids.

Biological control of the vineyard: new microbiological findings from CREA-VE

According to the Food and Agriculture Organisation (FAO), 75.866 km2 of the world is dedicated to grape cultivation. About 71.0% of the world’s grape production is destined for winemaking, 27.0% for consumption as fresh fruit and 2.0% as raisin. Grape production is mainly hindered by fungal infections, that can develop both in field and post-harvest.

The impact of acetaldehyde on phenolic evolution of a free-SO2 red wine

Some wine producers, in good years, can produce free-SO2 red wines and decide to add the minimum amount of sulphur dioxide only at bottling. To manage this addition

Effects of post-fermentative cold maceration on chemical and sensory characteristics of Syrah, Cabernet Franc and Montepulciano wines

Astringency sensation decreases slowly during the aging of red wine. Complex reactions of condensation and precipitation of wine polyphenols are involved in this phenomenon. Wine composition and conditions of aging, such as temperature and oxygen availability, strongly influence evolution of the phenol matrix. Recently, a Post-Fermentative cold Maceration (PFM) technique was tested with the aim of accelerating reactions leading to the reduction of astringency and exploiting chemical compounds not extracted from the solid parts of grapes during the previous traditional maceration phase. To this purpose, an innovative maceration system was engineered and used to perform PFM trials on marc derived from vinification of different varieties of red grapes.