IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Impact of dosage sugar-type and ageing on finished sparkling wine composition and development of Maillard reaction-associated compounds

Impact of dosage sugar-type and ageing on finished sparkling wine composition and development of Maillard reaction-associated compounds

Abstract

The Maillard reaction (MR) is a non-enzymatic reaction between reducing sugars and amino acids, resulting in the production of volatile and flavour-active compounds. Existing MR research primarily addresses thermally processed foods, whereas limited studies have evaluated low-temperature MR environments including sparkling wine. Sparkling wine is produced in low temperature conditions (15 ± 3°C), with low pH (pH 3-3.4) and high acidity (titratable acidity 7-12 g/L) 1. Various MR species including furans, acryl amides, and heterocyclic amines have been identified in aged sparkling wines and contribute to roasted, caramel, and nutty aromas 2–4. The aim of this research was to investigate the composition of finished sparkling wine during 18-months of ageing by measuring the formation of target MR-associated compounds and the relative levels of precursor species (amino acids, reducing sugars). Variable liqueur de dosage sugar-types were assessed for their impact on MR-associated compounds during ageing. Liqueur de dosage (composed of sugar, wine, and SO2) is an addition made post-disgorgement, and these sugars may degrade or interact with amino acids, thereby influencing the formation of MR compounds. To the best of our knowledge, no prior literature has investigated the role of Liqueur de dosage in the MR. In this research, six dosage sugar treatments were evaluated including D-glucose, D-fructose, sucrose (cane-derived), sucrose (beet-derived), maltose, and commercial rectified grape must concentrate (RCGM), in addition to a zero-dosage/control (no sugar added). Treatments were carried out on 2015 vintage sparkling wine (3 years on lees; 59% Chardonnay, 41% Pinot Noir) produced by Niagara College Teaching Winery in Niagara-on-the-Lake, ON. Dosage treatments were prepared from the sparkling wine base to approximately 6 g/L residual sugar. Bottles were sealed with cork closures and cellared on-site at the Cool Climate Oenology & Viticulture Institute with environmental controls for temperature and humidity. At intervals of 0, 9 and 18-months post-dosage addition, triplicate bottles of each wine were chemically analyzed. MR-associated products were quantified by HS-SPME-GC-MS. Precursors including sugars and amino acids were quantified by enzymatic assay and NMR techniques, respectively, and sugar purity was determined by HPLC. After 18 months of aging post-disgorging, four MRPs showed concentration differences (p < 0.05) between dosage sugar treatments (ethyl 3-mercaptopropionate, furfuryl ethyl ether, 2-ethylthiazole, and 2-furyl methyl ketone). Changes in sugar and amino acid content during ageing were used to relate changes in MR compound formation with precursor consumption. This study establishes the effect of dosage sugar-type on the formation of volatile MR compounds in traditional method sparkling wines during ageing.

References

1. Kemp, B.; Alexandre, H.; Robillard, B.; Marchal, R. J. Agric. Food Chem. 2015, 63 (1), 19–38. 
2. Le Menn, N.; Marchand, S.; De Revel, G.; Demarville, D.; Laborde, D.; Marchal, R. J. Agric. Food Chem. 2017, 65 (11), 2345–2356. 
3. Keim, H.; De Revel, G.; Marchand, S.; Bertrand, A. J. Agric. Food Chem. 2002, 50 (21), 5803–5807. 
4. Marchand, S.; Almy, J.; de Revel, G. J. Food Sci. 2011, 76 (6), 861-868.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Charnock Hannah1, Pickering Gary J.1,2,3,4, Kemp Belinda S.1,2

1Department of Biological Sciences, Faculty of Mathematics & Science, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, Canada, L2S 3A1
2Cool Climate Oenology & Viticulture Institute, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, Canada, L2S 3A1
3National Wine and Grape Industry Center, Charles Sturt University, McKeown Drive, Wagga Wagga, NSW 2678, Australia
4Sustainability Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD 4556, Australia

Contact the author

Keywords

sparkling wine, Maillard reaction, time-course ageing

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

The heritage behind the very old vineyards – The novelty with tradition for the future 

In Portugal, the prospection and conservation of representative samples of intra-varietal variability of grapevine has been carried out for 46 years, and in 2010 an infrastructure was created for the conservation of all these genetic resources – the portuguese association for grapevine diversity (porvid) experimental centre for the conservation of grapevine diversity. the aim is to save the genetic identity of ancient varieties to prevent their imminent loss and to preserve the raw material for current and future selections, thus adding economic value and sustainability to the vine and wine sector.

The development of a simple electrochemical method based on molecularly imprinted polymers for the selective determination of caffeic acid in wine

Caffeic acid (CA) is an antioxidant of great importance in the food sector, such as wine, where it acts as a marker of wine ageing, as well as in the health sector due to its antioxidant properties and beneficial effects including the prevention of inflammation, cancer, neurodegenerative diseases, and diabetes.

Climate, Viticulture, and Wine … my how things have changed!

The planet is warmer than at any time in our recorded past and increasing greenhouse emissions and persistence in the climate system means that continued warming is highly likely. Climate change has already altered the basic framework of growing grapes for wine production worldwide and will likely continue to do so for years to come. The wine sector can continue to play an important role in leading the agricultural sector in addressing climate change. From developing on…

Water deficit impacts grape development without dramatically changing thiol precursor levels

The use of new fungus disease-tolerant grapevine varieties is a long-term and promising solution to reduce chemical input in viticulture. However, little is known about the effects of water deficit (WD) on the thiol aromatic potential of new varieties coming up from breeding programs. Varietal thiols such as 3-sulfanylhexan-ol (3SH), 4-methyl-4-sulfanylpentan-2-one (4MSP) and their derivatives are powerful aromatic compounds present in wines coming from odorless precursors in grapes, and could contribute to the wine typicity of such varieties.

Gamay And Gamaret Winemaking Processes Using Stems: Impact On The Wine Aromatic Composition.

Stems may bring various benefits to the wine such as alcoholic reduction, color protection or improvement of the tannic intensity.