IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Impact of dosage sugar-type and ageing on finished sparkling wine composition and development of Maillard reaction-associated compounds

Impact of dosage sugar-type and ageing on finished sparkling wine composition and development of Maillard reaction-associated compounds

Abstract

The Maillard reaction (MR) is a non-enzymatic reaction between reducing sugars and amino acids, resulting in the production of volatile and flavour-active compounds. Existing MR research primarily addresses thermally processed foods, whereas limited studies have evaluated low-temperature MR environments including sparkling wine. Sparkling wine is produced in low temperature conditions (15 ± 3°C), with low pH (pH 3-3.4) and high acidity (titratable acidity 7-12 g/L) 1. Various MR species including furans, acryl amides, and heterocyclic amines have been identified in aged sparkling wines and contribute to roasted, caramel, and nutty aromas 2–4. The aim of this research was to investigate the composition of finished sparkling wine during 18-months of ageing by measuring the formation of target MR-associated compounds and the relative levels of precursor species (amino acids, reducing sugars). Variable liqueur de dosage sugar-types were assessed for their impact on MR-associated compounds during ageing. Liqueur de dosage (composed of sugar, wine, and SO2) is an addition made post-disgorgement, and these sugars may degrade or interact with amino acids, thereby influencing the formation of MR compounds. To the best of our knowledge, no prior literature has investigated the role of Liqueur de dosage in the MR. In this research, six dosage sugar treatments were evaluated including D-glucose, D-fructose, sucrose (cane-derived), sucrose (beet-derived), maltose, and commercial rectified grape must concentrate (RCGM), in addition to a zero-dosage/control (no sugar added). Treatments were carried out on 2015 vintage sparkling wine (3 years on lees; 59% Chardonnay, 41% Pinot Noir) produced by Niagara College Teaching Winery in Niagara-on-the-Lake, ON. Dosage treatments were prepared from the sparkling wine base to approximately 6 g/L residual sugar. Bottles were sealed with cork closures and cellared on-site at the Cool Climate Oenology & Viticulture Institute with environmental controls for temperature and humidity. At intervals of 0, 9 and 18-months post-dosage addition, triplicate bottles of each wine were chemically analyzed. MR-associated products were quantified by HS-SPME-GC-MS. Precursors including sugars and amino acids were quantified by enzymatic assay and NMR techniques, respectively, and sugar purity was determined by HPLC. After 18 months of aging post-disgorging, four MRPs showed concentration differences (p < 0.05) between dosage sugar treatments (ethyl 3-mercaptopropionate, furfuryl ethyl ether, 2-ethylthiazole, and 2-furyl methyl ketone). Changes in sugar and amino acid content during ageing were used to relate changes in MR compound formation with precursor consumption. This study establishes the effect of dosage sugar-type on the formation of volatile MR compounds in traditional method sparkling wines during ageing.

References

1. Kemp, B.; Alexandre, H.; Robillard, B.; Marchal, R. J. Agric. Food Chem. 2015, 63 (1), 19–38. 
2. Le Menn, N.; Marchand, S.; De Revel, G.; Demarville, D.; Laborde, D.; Marchal, R. J. Agric. Food Chem. 2017, 65 (11), 2345–2356. 
3. Keim, H.; De Revel, G.; Marchand, S.; Bertrand, A. J. Agric. Food Chem. 2002, 50 (21), 5803–5807. 
4. Marchand, S.; Almy, J.; de Revel, G. J. Food Sci. 2011, 76 (6), 861-868.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Charnock Hannah1, Pickering Gary J.1,2,3,4, Kemp Belinda S.1,2

1Department of Biological Sciences, Faculty of Mathematics & Science, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, Canada, L2S 3A1
2Cool Climate Oenology & Viticulture Institute, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, Canada, L2S 3A1
3National Wine and Grape Industry Center, Charles Sturt University, McKeown Drive, Wagga Wagga, NSW 2678, Australia
4Sustainability Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD 4556, Australia

Contact the author

Keywords

sparkling wine, Maillard reaction, time-course ageing

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

The geological and geomorphological events that determine the soil functional characters of a terroir

The geology of a region is deemed to be an important component of terroir, as it influences the shape of the landscape and the climate of vineyard. The nature of rock and the geomorphological history of a terroir affect soil physical and chemical composition through a dynamic interplay with the changes of climate, vegetation and other living organisms, as well as with man activities.

Proanthocyanin composition in new varieties from monastrell

AIM: Proanthocyanidins are responsible in an important way for positive aspects in wines, such as body and color stability in red wines, but they are also responsible for sensory characteristics that can be negative for their quality when found in excessive concentrations.

Ten grapevine rootstocks: effects on vegetative development, production and grape quality of cv. Mencia in the d.o. Bierzo (Spain)

Grapevine rootstock is basic to achieve good adaptation of the vine to ground and environment.

Freeze-thaw temperature oscillations promote increased differential gene expression during grapevine bud dormancy

In northern cold climate conditions, chilling requirement fulfillment in dormant grapevine buds is slowed or stopped by subzero temperatures impacting the transcriptional processes needed to complete chilling requirement. Cabernet Franc and Reisling in Geneva, NY were used to determine the impact of natural oscillating temperatures on grapevine bud transcriptional activity during light and dark periods of a two-week period in January with fluctuating diurnal winter temperatures. Cabernet Franc and Reisling bud samples were collected at 32 time points during the natural vineyard temperature cycle at 6:00 (dark), 14:00 (light) and 18:00 (dark) hours) to monitor gene expression in consecutive freezing and non-freezing temperature oscillations. Genotype, light and dark, and temperature oscillations conditions were explored.

Enzyme treatments during pre-fermentative maceration of white winegrapes: effect on volatile organic compounds and chromatic traits

Volatile organic compounds (VOCs) are very important for the characterisation and quality of the final white wine. An oenological practice to increase the extraction of aroma compounds is the cold pre-fermentative maceration [1,2], although it may also release phenolic compounds that confer darker chromatic traits to white wines, not appreciated by consumers. This practice could be improved by the use of enzymes in order to facilitate the release of the odorous molecules. In this study, the effect of different enzyme treatments during skin contact on the chromatic characteristics and volatile composition of white musts from four winegrape varieties was evaluated.