IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Impact of dosage sugar-type and ageing on finished sparkling wine composition and development of Maillard reaction-associated compounds

Impact of dosage sugar-type and ageing on finished sparkling wine composition and development of Maillard reaction-associated compounds

Abstract

The Maillard reaction (MR) is a non-enzymatic reaction between reducing sugars and amino acids, resulting in the production of volatile and flavour-active compounds. Existing MR research primarily addresses thermally processed foods, whereas limited studies have evaluated low-temperature MR environments including sparkling wine. Sparkling wine is produced in low temperature conditions (15 ± 3°C), with low pH (pH 3-3.4) and high acidity (titratable acidity 7-12 g/L) 1. Various MR species including furans, acryl amides, and heterocyclic amines have been identified in aged sparkling wines and contribute to roasted, caramel, and nutty aromas 2–4. The aim of this research was to investigate the composition of finished sparkling wine during 18-months of ageing by measuring the formation of target MR-associated compounds and the relative levels of precursor species (amino acids, reducing sugars). Variable liqueur de dosage sugar-types were assessed for their impact on MR-associated compounds during ageing. Liqueur de dosage (composed of sugar, wine, and SO2) is an addition made post-disgorgement, and these sugars may degrade or interact with amino acids, thereby influencing the formation of MR compounds. To the best of our knowledge, no prior literature has investigated the role of Liqueur de dosage in the MR. In this research, six dosage sugar treatments were evaluated including D-glucose, D-fructose, sucrose (cane-derived), sucrose (beet-derived), maltose, and commercial rectified grape must concentrate (RCGM), in addition to a zero-dosage/control (no sugar added). Treatments were carried out on 2015 vintage sparkling wine (3 years on lees; 59% Chardonnay, 41% Pinot Noir) produced by Niagara College Teaching Winery in Niagara-on-the-Lake, ON. Dosage treatments were prepared from the sparkling wine base to approximately 6 g/L residual sugar. Bottles were sealed with cork closures and cellared on-site at the Cool Climate Oenology & Viticulture Institute with environmental controls for temperature and humidity. At intervals of 0, 9 and 18-months post-dosage addition, triplicate bottles of each wine were chemically analyzed. MR-associated products were quantified by HS-SPME-GC-MS. Precursors including sugars and amino acids were quantified by enzymatic assay and NMR techniques, respectively, and sugar purity was determined by HPLC. After 18 months of aging post-disgorging, four MRPs showed concentration differences (p < 0.05) between dosage sugar treatments (ethyl 3-mercaptopropionate, furfuryl ethyl ether, 2-ethylthiazole, and 2-furyl methyl ketone). Changes in sugar and amino acid content during ageing were used to relate changes in MR compound formation with precursor consumption. This study establishes the effect of dosage sugar-type on the formation of volatile MR compounds in traditional method sparkling wines during ageing.

References

1. Kemp, B.; Alexandre, H.; Robillard, B.; Marchal, R. J. Agric. Food Chem. 2015, 63 (1), 19–38. 
2. Le Menn, N.; Marchand, S.; De Revel, G.; Demarville, D.; Laborde, D.; Marchal, R. J. Agric. Food Chem. 2017, 65 (11), 2345–2356. 
3. Keim, H.; De Revel, G.; Marchand, S.; Bertrand, A. J. Agric. Food Chem. 2002, 50 (21), 5803–5807. 
4. Marchand, S.; Almy, J.; de Revel, G. J. Food Sci. 2011, 76 (6), 861-868.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Charnock Hannah1, Pickering Gary J.1,2,3,4, Kemp Belinda S.1,2

1Department of Biological Sciences, Faculty of Mathematics & Science, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, Canada, L2S 3A1
2Cool Climate Oenology & Viticulture Institute, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, Canada, L2S 3A1
3National Wine and Grape Industry Center, Charles Sturt University, McKeown Drive, Wagga Wagga, NSW 2678, Australia
4Sustainability Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD 4556, Australia

Contact the author

Keywords

sparkling wine, Maillard reaction, time-course ageing

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Effects of water deficit on secondary metabolites in grapes and wines

In this video recording of the IVES science meeting 2021, Simone D. Castellarin (University of British Columbia, Wine Research Center, Wine Research Centre, Vancouver, Canada) speaks about the effects of water deficit on secondary metabolites in grapes and wines. This presentation is based on an original article accessible for free on OENO One.

Soave beyond the zonation

In a previous zoning program (1998-2002), climatic and pedological factors were able to distinguish 14 terroir within the Soave DOC area where wine characteristics are well recognizable. Nevertheless, in the past vinegrowers identified several vineyards where a better quality of the grapes and wines could be obtained. So, « beyond the zonation » will aim to suggest a new methodology to characterise the Cru, starting with 15 vineyards that were selected in the Soave Classico DOC area. In the year 2005, a meteorological station was positioned in each vineyard and temperature data were collected; because of the limited area of investigation, only 3 rain sensors were set up.

El Malvasía en la isla de la Palma

El tema que me corresponde tratar en esta mini conferencia sobre “Caracterización vitivinícola de las Malvasías en Canarias”, es por razones obvias la parte que atañe a la Isla de La Palma.

LC-HRMS data analysis of natural polymer homologue series Application on wine neutral oligosaccharides

Although oligosaccharides have much impact both on health (prevention of diabetes, cardiovascular disease), and on the perception of wine (sweetness, astringency, acidity or bitterness), information on their composition in wine is still limited.

Improving stilbenes in vitis Labrusca L. Grapes through methyl jasmonate applications

Grapes (Vitis sp.) are considered a major source of phenolic compounds such as flavonols, anthocyanins and stilbenes. Studies related to the beneficial effects of these compounds on health have encouraged research aimed at increasing their concentration in fruits. On this behalf, several plant growth regulators such as jasmonic acid and its volatile ester, methyl-jasmonate (MeJa), have demonstrated promising results in many fruits. However, Brazilian subtropical climate might interfere on treatment response. The present study aims to evaluate the application of MeJa in the pre-harvest period in Concord and Isabel Precoce grapes (Vitis labrusca L.).